Skip to main content
Log in

Modifications to the signal from a gravitational wave event due to a surrounding shell of matter

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In previous work, we established theoretical results concerning the effect of matter shells surrounding a gravitational wave (GW) source, and we now apply these results to astrophysical scenarios. Firstly, it is shown that GW echoes that are claimed to be present in LIGO data of certain events, could not have been caused by a matter shell. However, it is also shown that there are scenarios in which matter shells could make modifications of order a few percent to a GW signal; these scenarios include binary black hole mergers, binary neutron star mergers, and core collapse supernovae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bishop, N.T., van der Walt, P.J., Naidoo, M.: Effect of a low density dust shell on the propagation of gravitational waves. Gen. Rel. Grav. 52(9), 92 (2020). https://doi.org/10.1007/s10714-020-02740-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? JHEP 02, 062 (2013). https://doi.org/10.1007/JHEP02(2013)062

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Lunin, O., Mathur, S.D.: AdS / CFT duality and the black hole information paradox. Nucl. Phys. B 623, 342 (2002). https://doi.org/10.1016/S0550-3213(01)00620-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Giudice, G.F., McCullough, M., Urbano, A.: Hunting for dark particles with gravitational waves. JCAP 10, 001 (2016). https://doi.org/10.1088/1475-7516/2016/10/001

    Article  ADS  Google Scholar 

  5. Mazur, P.O., Mottola, E.: Gravitational vacuum condensate stars. Proc. Nat. Acad. Sci. 101, 9545 (2004). https://doi.org/10.1073/pnas.0402717101

    Article  ADS  Google Scholar 

  6. Liebling, S.L., Palenzuela, C.: Dynamical boson stars. Living Rev. Rel. 20(1), 5 (2017). https://doi.org/10.12942/lrr-2012-6

  7. Cardoso, V., Franzin, E., Pani, P.: Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116(17), 171101 (2016). [Erratum: Phys. Rev. Lett. 117, 089902 (2016)]

  8. Cardoso, V., Hopper, S., Macedo, C.F.B., Palenzuela, C., Pani, P.: Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Phys. Rev. D 94(8), 084031 (2016). https://doi.org/10.1103/PhysRevD.94.084031

  9. Cardoso, V., Pani, P.: Tests for the existence of black holes through gravitational wave echoes. Nat. Astron. 1(9), 586 (2017). https://doi.org/10.1038/s41550-017-0225-y

    Article  ADS  Google Scholar 

  10. Nakano, H., Sago, N., Tagoshi, H., Tanaka, T.: Black hole ringdown echoes and howls, Prog. Theor. Exp. Phys. 2017(7) (2017). https://doi.org/10.1093/ptep/ptx093

  11. Testa, A., Pani, P.: Analytical template for gravitational-wave echoes: signal characterization and prospects of detection with current and future interferometers. Phys. Rev. D 98(4), 044018 (2018). https://doi.org/10.1103/PhysRevD.98.044018

    Article  ADS  MathSciNet  Google Scholar 

  12. Wang, Y.T., Li, Z.P., Zhang, J., Zhou, S.Y., Piao, Y.S.: Are gravitational wave ringdown echoes always equal-interval? Eur. Phys. J. C 78(6), 482 (2018). https://doi.org/10.1140/epjc/s10052-018-5974-y

    Article  ADS  Google Scholar 

  13. Bueno, P., Cano, P.A., Goelen, F., Hertog, T., Vercnocke, B.: Echoes of Kerr-like wormholes. Phys. Rev. D 97(2), 024040 (2018). https://doi.org/10.1103/PhysRevD.97.024040

    Article  ADS  MathSciNet  Google Scholar 

  14. Maselli, A., Völkel, S.H., Kokkotas, K.D.: Parameter estimation of gravitational wave echoes from exotic compact objects. Phys. Rev. D 96(6), 064045 (2017). https://doi.org/10.1103/PhysRevD.96.064045

    Article  ADS  Google Scholar 

  15. Barceló, C., Carballo-Rubio, R., Garay, L.J.: Gravitational wave echoes from macroscopic quantum gravity effects. JHEP 05, 054 (2017). https://doi.org/10.1007/JHEP05(2017)054

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Visser, M.: Phenomenological aspects of black holes beyond general relativity. Phys. Rev. D 98(12), 124009 (2018). https://doi.org/10.1103/PhysRevD.98.124009

    Article  ADS  MathSciNet  Google Scholar 

  17. Barausse, E., Cardoso, V., Pani, P.: Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D 89(10), 104059 (2014). https://doi.org/10.1103/PhysRevD.89.104059

    Article  ADS  Google Scholar 

  18. Leung, P., Liu, Y., Suen, W., Tam, C., Young, K.: Quasinormal modes of dirty black holes. Phys. Rev. Lett. 78, 2894 (1997). https://doi.org/10.1103/PhysRevLett.78.2894

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Konoplya, R.A., Stuchlík, Z., Zhidenko, A.: Echoes of compact objects: new physics near the surface and matter at a distance. Phys. Rev. D 99, 024007 (2019). https://doi.org/10.1103/PhysRevD.99.024007

    Article  ADS  MathSciNet  Google Scholar 

  20. Goswami, G., Chakravarty, G.K., Mohanty, S., Prasanna, A.R.: Constraints on cosmological viscosity and self-interacting dark matter from gravitational wave observations. Phys. Rev. D 95, 103509 (2017). https://doi.org/10.1103/PhysRevD.95.103509

    Article  ADS  Google Scholar 

  21. Baym, G., Patil, S.P., Pethick, C.J.: Damping of gravitational waves by matter. Phys. Rev. D 96, 084033 (2017). https://doi.org/10.1103/PhysRevD.96.084033

    Article  ADS  MathSciNet  Google Scholar 

  22. Abedi, J., Dykaar, H., Afshordi, N.: Echoes from the Abyss: tentative evidence for Planck-scale structure at black hole horizons. Phys. Rev. D 96(8), 082004 (2017). https://doi.org/10.1103/PhysRevD.96.082004

    Article  ADS  Google Scholar 

  23. Conklin, R.S., Holdom, B., Ren, J.: Gravitational wave echoes through new windows. Phys. Rev. D 98, 044021 (2018). https://doi.org/10.1103/PhysRevD.98.044021

    Article  ADS  Google Scholar 

  24. Abedi, J., Afshordi, N.: Echoes from the Abyss: a highly spinning black hole remnant for the binary neutron star merger GW170817. JCAP 11, 010 (2019). https://doi.org/10.1088/1475-7516/2019/11/010

    Article  ADS  MathSciNet  Google Scholar 

  25. Ashton, G., Birnholtz, O., Cabero, M., Capano, C., Dent, T., Krishnan, B., Meadors, G.D., Nielsen, A.B., Nitz, A., Westerweck, J.: Comments on: "Echoes from the abyss: Evidence for Planck-scale structure at black hole horizons" (2016). arXiv:1612.05625 [gr-qc]

  26. Westerweck, J., Nielsen, A., Fischer-Birnholtz, O., Cabero, M., Capano, C., Dent, T., Krishnan, B., Meadors, G., Nitz, A.H.: Low significance of evidence for black hole echoes in gravitational wave data. Phys. Rev. D 97(12), 124037 (2018). https://doi.org/10.1103/PhysRevD.97.124037

    Article  ADS  Google Scholar 

  27. Abedi, J., Dykaar, H., Afshordi, N.: Echoes from the Abyss: The Holiday Edition! (2017)

  28. Abedi, J., Dykaar, H., Afshordi, N.: Comment on: "Low significance of evidence for black hole echoes in gravitational wave data" (2018). arXiv:1803.08565 [gr-qc]

  29. Abedi, J., Afshordi, N.: Echoes from the Abyss: a status update (2020). arXiv:2001.00821 [gr-qc]

  30. Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems, Proc. R. Soc. London A269, 21 (1962)

  31. Sachs, R.: Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time, Proc. Roy. Soc. London A270, 103 (1962)

  32. Bishop, N.T., Rezzolla, L.: Extraction of gravitational waves in numerical relativity. Living Rev. Relativ. 19, 1 (2016). https://doi.org/10.1007/s41114-016-0001-9

    Article  ADS  MATH  Google Scholar 

  33. Bishop, N.T.: Linearized solutions of the Einstein equations within a Bondi-Sachs framework, and implications for boundary conditions in numerical simulations. Class. Quantum Grav. 22(12), 2393 (2005). https://doi.org/10.1088/0264-9381/22/12/006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes, 2nd edn. Cambridge University Press, New York (1992)

    MATH  Google Scholar 

  35. Abbott, B., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

    Article  ADS  MathSciNet  Google Scholar 

  36. Nitz, A.H., Capano, C., Nielsen, A.B., Reyes, S., White, R., Brown, D.A., Krishnan, B.: 1-OGC: The first open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO data. Astrophys. J. 872(2), 195 (2019). https://doi.org/10.3847/1538-4357/ab0108

    Article  ADS  Google Scholar 

  37. Abbott, B.P., et al.: GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016). https://doi.org/10.1103/PhysRevLett.116.241103

    Article  ADS  Google Scholar 

  38. Abbott, B., Abbott, R., Abbott, T., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R., Adya, V. et al.: Gw170817: Observation of gravitational waves from a binary neutron star inspiral, Physical Review Letters 119(16) (2017). https://doi.org/10.1103/physrevlett.119.161101

  39. Abbott, B.P., et al.: A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Class. Quant. Grav. 37(5), 055002 (2020). https://doi.org/10.1088/1361-6382/ab685e

    Article  ADS  Google Scholar 

  40. GW150914 Template Data. https://www.gw-openscience.org/GW150914data

  41. Binary Black Hole Signals in LIGO Open Data. https://losc.ligo.org/s/events/GW150914/LOSC_Event_tutorial_GW150914.html

  42. Abbott, B., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

    Article  ADS  Google Scholar 

  43. Abbott, B., et al.: GW190425: Observation of a Compact Binary Coalescence with Total Mass \(\sim 3.4 M_{\odot }\), Astrophys. J. Lett. 892(1), L3 (2020). https://doi.org/10.3847/2041-8213/ab75f5

  44. Abbott, B.P., et al.: Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9

    Article  ADS  Google Scholar 

  45. Abbott, B., et al.: Observing gravitational-wave transient GW150914 with minimal assumptions. Phys. Rev. D 93(12), 122004 (2016). [Addendum: Phys. Rev. D 94, 069903 (2016)]

  46. Abbott, B., et al.: GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121(16), 161101 (2018). https://doi.org/10.1103/PhysRevLett.121.161101

    Article  ADS  Google Scholar 

  47. Müller, B.: Hydrodynamics of core-collapse supernovae and their progenitors. Astrophysics 6, 3 (2020). https://doi.org/10.1007/s41115-020-0008-5

    Article  Google Scholar 

  48. Abdikamalov, E., Pagliaroli, G., Radice, D.: Gravitational Waves from Core-Collapse Supernovae (2020). arXiv:2010.04356

  49. Woosley, S.E., Heger, A., Weaver, T.A.: The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015 (2002)

    Article  ADS  Google Scholar 

  50. Woosley, S., Heger, A.: Nucleosynthesis and remnants in massive stars of solar metallicity. Phys. Rept. 442, 269 (2007). https://doi.org/10.1016/j.physrep.2007.02.009

    Article  ADS  Google Scholar 

  51. Andresen, H., Müller, B., Müller, E., Janka, H.T.: Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae. Mon. Not. Roy. Astron. Soc. 468(2), 2032 (2017). https://doi.org/10.1093/mnras/stx618

    Article  ADS  Google Scholar 

  52. Andresen, H., Müller, E., Janka, H., Summa, A., Gill, K., Zanolin, M.: Gravitational waves from 3D core-collapse supernova models: the impact of moderate progenitor rotation. Mon. Not. Roy. Astron. Soc. 486(2), 2238 (2019). https://doi.org/10.1093/mnras/stz990

    Article  ADS  Google Scholar 

  53. Radice, D., Morozova, V., Burrows, A., Vartanyan, D., Nagakura, H.: Characterizing the gravitational wave signal from core-collapse supernovae. Astrophys. J. Lett. 876(1), L9 (2019). https://doi.org/10.3847/2041-8213/ab191a

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation, South Africa, under grant number 118519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel T. Bishop.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 25 KB)

Matlab scripts

Matlab scripts

The Matlab scripts NormTest.m (see Eq. (9)), BH.m used in Sect. 5.1, BNS.m used in Sect. 5.2, and CCSN.m used in Sect. 5.3.1 are plain text files; the file clean.xlsx is a spreadsheet file containing input data for BH.m. All the files are available as online supplementary material.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidoo, M., Bishop, N.T. & van der Walt, P.J. Modifications to the signal from a gravitational wave event due to a surrounding shell of matter. Gen Relativ Gravit 53, 77 (2021). https://doi.org/10.1007/s10714-021-02841-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02841-z

Keywords

Navigation