Skip to main content
Log in

Selectively Reinforced Functionally Graded Composite-like Glass/Carbon Polymer Nanocomposites: Designed for Efficient Bending and Impact Performance

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Offshore wind turbine blades (OWTBs) are exposed to various types of loadings during their service life. Moreover, due to their tremendous size, huge investment costs are established, including advanced engineering materials and production process solutions. To decrease their investment cost without sacrificing their mechanical performances, advanced engineering solutions in the view of material selection and design should be implemented. With this motivation, we aimed to develop a novel laminated composite design considering reducing investment costs without compromising the bending and impact resistance of an OWTB. For this, an efficient and cost-effective design of a functionally graded composite (FGM)-like glass/carbon fibers reinforced hybrid polymer composite with a specific stacking sequence was presented. To evaluate mechanical performance of the composite structure, tensile, flexural, and to simulate environmental conditions, low-velocity impact tests were conducted. Furthermore, multi-walled carbon nanotubes (MWCNTs) were also introduced into the polymer matrix to evaluate their effectiveness in the hybridized composite. Drastic improvements in the bending strength (55.8 %) and strain (39.7 %) were obtained compared to the neat carbon fiber reinforced epoxy composites (CFs), especially with the aid of MWCNTs. According to impact tests, it was pointed out that it is possible to obtain higher impact peak forces (around 15 %) compared to neat CFs. However, MWCNTs contributed with slight increments in impact resistance but effectively restricted the impact damage propagation. This study reveals it is possible to tune the bending performance, the absorbed energy, and the damage extension by utilizing glass and carbon fiber laminates in an FGM-like structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Grujicic, G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, and M. Ozen, J. Mater. Eng. Perfor., 19, 1116 (2010).

    Article  CAS  Google Scholar 

  2. P. K. Chiu, P. Roth-Johnson, and R. E. Wirz, Renew. Energy, 147, 2440 (2020).

    Article  Google Scholar 

  3. K. B. Katnam, A. J. Comer, D. Roy, L. F. M. da Silva, and T. M. Young, J. Adhes., 91, 113 (2014).

    Article  Google Scholar 

  4. K. Cox and A. Echtermeyer, Energy Procedia, 24, 194 (2012).

    Article  Google Scholar 

  5. L. Mishnaevsky, K. Branner, H. N. Petersen, J. Beauson, M. McGugan, and B. F. Sorensen, Materials (Basel), 10, 1285 (2017).

    Article  Google Scholar 

  6. H. Ullah, B. Ullah, and V. V. Silberschmidt, Compos. Struct., 246, 112426 (2020).

    Article  Google Scholar 

  7. P. S. Veers, T. D. Ashwill, H. J. Sutherland, D. L. Laird, D. W. Lobitz, D. A. Griffin, J. F. Mandell, W. D. Musial, K. Jackson, M. Zuteck, A. Miravete, S. W. Tsai, and J. L. Richmond, Wind Energy, 6, 245 (2003).

    Article  Google Scholar 

  8. N. M. Chikhradze, F. D. S. Marquis, and G. S. Abashidze, J. Mater. Res. Technol., 4, 60 (2015).

    Article  CAS  Google Scholar 

  9. C.-H. Ong and S. W. Tsai, “The Use of Carbon Fibers in Wind Turbine Blade Design: a SERI-8 Blade Example”, https://energy.sandia.gov/wp-content/gallery/uploads/SAND2000-0478.pdf (Accessed July 3, 2021).

  10. J. Zhang, K. Chaisombat, S. He, and C. H. Wang, Mater. Des., 36, 75 (2012).

    Article  CAS  Google Scholar 

  11. Y. Swolfs, L. Gorbatikh, and I. Verpoest, Compos. Part A-Appl. Sci. Manuf., 67, 181 (2014).

    Article  CAS  Google Scholar 

  12. M. Srinivas, I. Srikanth, G. RamaRao, and G. Swami Naidu, Mater. Today: Proc., 18, 4580 (2019).

    CAS  Google Scholar 

  13. Y.-J. You, Y.-H. Park, H.-Y. Kim, and J.-S. Park, Compos. Struct., 80, 117 (2007).

    Article  Google Scholar 

  14. H. Diao, A. Bismarck, P. Robinson, and M. R. Wisnom, “Production of Continuous Intermingled CF/GF Hybrid Composite Via Fibre Tow Spreading Technology”, https://www.researchgate.net/publication/288387077_Production_of_continuous_intermingled_CFGF_hybrid_composite_via_fibre_tow_spreading_technology (Accessed July 3, 2021).

  15. M. Sayer, N. B. Bektaş, and O. Sayman, Compos. Struct., 92, 1256 (2010).

    Article  Google Scholar 

  16. L. Onal and S. Adanur, J. Ind. Text., 31, 255 (2002).

    Article  CAS  Google Scholar 

  17. C. Dong and I. J. Davies, Mater. Des., 37, 450 (2012).

    Article  CAS  Google Scholar 

  18. I. Papa, L. Boccarusso, A. Langella, and V. Lopresto, Compos. Struct., 232, 11571 (2020).

    Article  Google Scholar 

  19. M. Z. Nejad and P. Fatehi, Int. J. Eng. Sci., 86, 26 (2015).

    Article  Google Scholar 

  20. U. Köklü, O. Demir, A. Avcı, and A. Etyemez, J. Mech. Sci. Technol., 31, 4703 (2017).

    Article  Google Scholar 

  21. S. Suresh and A. Mortensen, “Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behavior of Graded Metals and Metal-Ceramic Composites”, 1st ed., pp.144–145, IOM Communications Ltd., London, England, 1998.

    Google Scholar 

  22. G. Udupa, S. S. Rao, and K. V. Gangadharan, Proc. Mater. Sci., 5, 1291 (2014).

    Article  CAS  Google Scholar 

  23. L. Gemi, M. Kara, and A. Avci, Compos. Part B: Eng., 106, 154 (2016).

    Article  CAS  Google Scholar 

  24. J. Njuguna, K. Pielichowski, and S. Desai, Polym. Adv. Technol., 19, 947 (2008).

    Article  CAS  Google Scholar 

  25. E. T. Thostenson, Z. Ren, and T.-W. Chou, Compos. Sci. Technol., 61, 1899 (2001).

    Article  CAS  Google Scholar 

  26. F. Gojny, M. Wichmann, B. Fiedler, and K. Schulte, Compos. Sci. Technol., 65, 2300 (2005).

    Article  CAS  Google Scholar 

  27. A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Compos. Sci. Technol., 62, 1993 (2002).

    Article  CAS  Google Scholar 

  28. M. Kim, Y.-B. Park, O. I. Okoli, and C. Zhang, Compos. Sci. Technol., 69, 335 (2009).

    Article  CAS  Google Scholar 

  29. Y. Zhou, F. Pervin, L. Lewis, and S. Jeelani, Mater. Sci. Eng.: A, 475, 157 (2008).

    Article  Google Scholar 

  30. S. Chatterjee, F. Nafezarefi, N. H. Tai, L. Schlagenhauf, F. A. Nüesch, and B. T. T. Chu, Carbon, 50, 5380 (2012).

    Article  CAS  Google Scholar 

  31. V. Eskizeybek, A. Avci, and A. Gülce, Compos. Part A-Appl. Sci. Manuf., 63, 94 (2014).

    Article  CAS  Google Scholar 

  32. M. Quaresimin, K. Schulte, M. Zappalorto, and S. Chandrasekaran, Compos. Sci. Technol., 123, 187 (2016).

    Article  CAS  Google Scholar 

  33. H. Ulus, T. Üstün, Ö. S. Şahin, S. E. Karabulut, V. Eskizeybek, and A. Avc, J. Compos. Mater., 50, 761 (2015).

    Article  Google Scholar 

  34. H. Ulus, T. Üstün, V. Eskizeybek, Ö. S. Şahin, A. Avcı, and M. Ekrem, Appl. Surf. Sci., 318, 37 (2014).

    Article  CAS  Google Scholar 

  35. E. M. Soliman, M. P. Sheyka, and M. R. Taha, Int. J. Impact Eng., 47, 39 (2012).

    Article  Google Scholar 

  36. V. Eskizeybek, A. Yar, and A. Avcı, Compos. Sci. Technol., 157, 30 (2018).

    Article  CAS  Google Scholar 

  37. H. Ulus, T. Üstün, Ö. S. Şahin, S. E. Karabulut, V. Eskizeybek, and A. Avcı, J. Compos. Mater., 50, 761 (2015).

    Article  Google Scholar 

  38. P. R. Thakre, D. C. Lagoudas, J. C. Riddick, T. S. Gates, S.-J. V. Frankland, J. G. Ratcliffe, Z. Jiang, and E. V. Barrera, J. Compos. Mater., 45, 1091 (2011).

    Article  CAS  Google Scholar 

  39. C. Dong, H. A. Ranaweera-Jayawardena, and I. J. Davies, Compos. Part B: Eng., 43, 573 (2012).

    Article  CAS  Google Scholar 

  40. M. Shioya and M. Nakatani, Compos. Sci. Technol., 60, 219 (2000).

    Article  CAS  Google Scholar 

  41. M. V. Hosur, A. A. Mohammed, S. Zainuddin, and S. Jeelani, Compos. Struct., 82, 101 (2008).

    Article  Google Scholar 

  42. G. A. Schoeppner and S. Abrate, Compos. Part A-Appl. Sci. Manuf., 31, 903 (2000).

    Article  Google Scholar 

  43. M. V. Hosur, M. Adbullah, and S. Jeelani, Compos. Struct., 67, 253 (2005).

    Article  Google Scholar 

  44. M. V. Kowsika and P. R. Mantena, J. Thermoplast. Compos. Mater., 12, 121 (1999).

    Article  CAS  Google Scholar 

  45. P.-Y. Hung, K.-T. Lau, L.-K. Cheng, J. Leng, and D. Hui, Compos. Part B: Eng., 133, 86 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Selçuk University’s scientific research projects (BAP) Coordinatorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okan Demir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, O., Tatar, A.C., Eskizeybek, V. et al. Selectively Reinforced Functionally Graded Composite-like Glass/Carbon Polymer Nanocomposites: Designed for Efficient Bending and Impact Performance. Fibers Polym 23, 196–211 (2022). https://doi.org/10.1007/s12221-021-0046-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0046-6

Keywords

Navigation