Skip to main content
Log in

Studies on Hollow Glass Microsphere Reinforced Silicone Matrix Composite for Use in Fast Curing Low Density Thermal Insulation Coating Applications

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A low density material coating based on silicone polymer matrix reinforced with hollow glass microspheres is developed for thermal insulation. An organo-platinum compound is added to the resin matrix to make it a fast room temperature curing coating. It has a low density in the order of 0.39−0.34 g/cc with medium Shore A hardness in the order of 60–65. The thermal stability in an inert and oxidative environment was analyzed by the TGA method. The insulative properties are investigated using an infra-red heaters test set up, which showed almost 50 % temperature reduction on the substrate compared to the non-coated substrate. The coating properties, like adhesion, impact resistance, corrosion resistance, etc., are analyzed using various bond promoters and excellent in the class of insulative coatings. The effect of various diluents on the curing is observed and then finalized the suitable diluents for spray coating. The coating forms hard silica char, which in turn protect the surface from further high temperatures. A scheme for painting the metallic and non-metallic articles is also established for ease of application to the user.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Natali, J. M. Kenny, and L. Torre, A Review, Prog. Mater. Sci., 84, 192 (2016).

    Article  CAS  Google Scholar 

  2. U. Eduok, O. Faye, and J. Szpunar, Prog. Org. Coat., 111, 124 (2017).

    Article  CAS  Google Scholar 

  3. D. K. S. Tarek, M. Fouad, E. F. Abadir, and S. M. El-Marsafy, Int. J. Eng. Res. Technol., 5, 428 (2016).

    Article  Google Scholar 

  4. E. V. Titov, R. Kumar, and D. A. Levin, AIP Conf. Proc., 1333, 492 (2011).

    Article  Google Scholar 

  5. M. Natali, I. Puri, J. Kenny, L. Torre, and M. Rallini, Polym. Degrad. Stab., 141, 84 (2017).

    Article  CAS  Google Scholar 

  6. E. Venkatapathy, B. Laub, G. J. Hartman, J. O. Arnold, M. J. Wright, and G. A. Allen, Adv. Sp. Res., 44, 138 (2009).

    Article  CAS  Google Scholar 

  7. B. Zhu, J. Ma, J. Wang, J. Wu, and D. Peng, J. Reinf. Plast. Compos., 31, 1311 (2012).

    Article  Google Scholar 

  8. J. Li, X. Luo, and X. Lin, Mater. Des., 46, 902 (2013).

    Article  CAS  Google Scholar 

  9. E. L. Strauss, US Patent, 4031059 A (1977).

  10. J. W. Gooch (Ed.), “Ablative Plastic”, Encycl. Dict. Polym., Springer New York, New York, NY, 2011.

    Google Scholar 

  11. K.-S. Jang, Polym. Test., 84, 106408 (2020).

    Article  CAS  Google Scholar 

  12. E. STRAUSS, Response of Superlight Ablators to Various Heat Pulses, in: 9th Struct. Dyn. Mater. Conf., 2012.

  13. E. L. Strauss, J. Spacecr. Rockets, 5, 1357 (1968).

    Article  Google Scholar 

  14. A. O. Barney, US Patent, US6627697B2 (2003).

  15. T. Srivastava, N. K. Katari, B. R. Ravuri, and R. Gundla, Silicon, doi: https://doi.org/10.1007/s12633-020-00869-5 (2020).

  16. W. Zhou, H. Yang, X. Guo, and J. Lu, Polym. Degrad. Stab., 91, 1471 (2006).

    Article  CAS  Google Scholar 

  17. P. R. Dvornic in “Thermal Properties of Polysiloxanes” (R. G. Jones, W. Ando, and J. Chojnowski Eds.), Silicon-Containing Polym. Sci. Technol. Their Synth. Appl., pp.185–212, Springer Netherlands, Dordrecht, 2000.

    Google Scholar 

  18. G. Rajesh, P. K. Maji, M. Bhattacharya, A. Choudhury, N. Roy, A. Saxena, and A. K. Bhowmick, Polym. Polym. Compos., 18, 477 (2010).

    CAS  Google Scholar 

  19. C. Kan, Q. Yuan, A. Luo, and X. Kong, Polym. Adv. Technol., 7, 76 (1996).

    Article  CAS  Google Scholar 

  20. P. Mazurek, S. Vudayagiri, and A. L. Skov, Chem. Soc. Rev., 48, 1448 (2019).

    Article  CAS  Google Scholar 

  21. J. N. Lee, C. Park, and G. M. Whitesides, Anal. Chem., 75, 6544 (2003).

    Article  CAS  Google Scholar 

  22. E. Favre, Eur. Polym. J., 32, 1183 (1996).

    Article  CAS  Google Scholar 

  23. B. Arkles, Chemtech, 7, 766 (1977).

    CAS  Google Scholar 

  24. S. Hamdani, Devarennes, C. Longuet, D. Perrin, J.-M. Lopez-cuesta, and F. Ganachaud, Polym. Degrad. Stab., 94, 465 (2009).

    Article  CAS  Google Scholar 

  25. B. Gardelle, S. Duquesne, P. Vandereecken, S. Bellayer, and S. Bourbigot, Prog. Org. Coat., 76, 1633 (2013).

    Article  CAS  Google Scholar 

  26. J. Lentini, J. Forensic Sci., 37, 1358 (1992).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to DRDO for support of this work. They are also thankful to Director, DRDL for all support and encouragement to carry out experimental works.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naresh Kumar Katari or Balaji Rao Ravuri.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, T., Katari, N.K., Krishna Mohan, S. et al. Studies on Hollow Glass Microsphere Reinforced Silicone Matrix Composite for Use in Fast Curing Low Density Thermal Insulation Coating Applications. Fibers Polym 23, 175–183 (2022). https://doi.org/10.1007/s12221-021-0566-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0566-0

Keywords

Navigation