Skip to main content
Log in

Cold Atmosphere Plasma Modification on Beta-Carotene-Loaded Nanofibers to Enhance Osteogenic Differentiation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2022

This article has been updated

Abstract

Since bone disorders have globally increased, tissue engineering could provide a solution by generating fully functional bone tissues. The most powerful aspect of bone tissue engineering is biomaterials. The focus of this study was the development of PCL nanofibers loaded with 4% β-carotene (βC) and PLGA nanofibers loaded with 2% βC as suitable bioactive scaffolds able to support the osteogenic differentiation of human bone marrow mesenchymal stem cells (MSCs). βC, a vitamin A progenitor, provided the potential for stimulating osteoblast differentiation. The electrospun PLGA and PCL nanofibers containing βC were treated by cold atmospheric plasma (CAP) at different times. These modified scaffolds were characterized by SEM to find the optimal time for CAP treatment. FTIR and contact angle measurements were used to detect and confirm surface chemical changes. Optimal CAP-treated scaffolds were seeded by MSCs and incubated for 21 days. The growth and proliferation of MSCs were analyzed by MTT assay in the early stages (up to 72 hours). The results confirmed the biocompatibility of the scaffolds. Our in-vitro study showed that the cell attachment, proliferation, and calcium deposition, as well as, the expression of RUNX2, SOX9, and osteonectin genes bone-specific markers during a 21-day culture were enhanced on CAP-treated PLGA/βC2% and PCL/βC4% nanofibers without an external bone differential agent. These advanced scaffolds can be applied in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. C. T. Laurencin, A. M. A. Ambrosio, M. D. Borden, and J. A. Cooper Jr., Annu. Rev. Biomed. Eng., 1, 19 (1999).

    Article  CAS  Google Scholar 

  2. F. R. Rose and R. O. Oreffo, Biochem. Biophys. Res. Commun., 292, 1 (2002).

    Article  CAS  Google Scholar 

  3. R. Song, M. Murphy, C. Li, K. Ting, C. Soo, and Z. Zheng, Drug Des. Devel. Ther., 12, 3117 (2018).

    Article  CAS  Google Scholar 

  4. R. F. Pereira and P. J. Bártolo, Engineering, 1, 90 (2015).

    Article  CAS  Google Scholar 

  5. J. P. Vacanti and R. Langer, The Lancet, 354, S32 (1999).

    Article  Google Scholar 

  6. A.-C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003).

    Article  CAS  Google Scholar 

  7. D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan, J. Biomed. Mater. Res. Part A, 55, 203 (2001).

    Article  CAS  Google Scholar 

  8. J. Hao, M. Yuan, and X. Deng, J. Appl. Polym. Sci., 86, 676 (2002).

    Article  CAS  Google Scholar 

  9. C. H. Kim, M. S. Khil, H. Y. Kim, H. U. Lee, and K. Y. Jahng, J. Biomed. Mater. Res. Part B: Appl. Biomater., 78, 283 (2006).

    Article  Google Scholar 

  10. E. Yildirimer, “A Novel Biodegradable Poly(ε-caprolactone urea) Urethane Incorporating Polyhedral Oligomeric Silsesquioxane Nanocomposite and Applications for Skin Tissue Engineering”, UCL (University College London), 2014.

  11. Y. Zhu, C. Gao, and J. Shen, Biomaterials, 23, 4889 (2002).

    Article  CAS  Google Scholar 

  12. P. Gentile, V. Chiono, I. Carmagnola, and P. V. Hatton, Int. J. Mol. Sci., 15, 3640 (2014).

    Article  CAS  Google Scholar 

  13. P. Gentile, M. E. Frongia, M. Cardellach, C. A. Miller, G. P. Stafford, G. J. Leggett, and P. V. Hatton, Acta Biomaterialia, 21, 35 (2015).

    Article  CAS  Google Scholar 

  14. L. Polo-Corrales, M. Latorre-Esteves, and J. E. Ramirez-Vick, J. Nanosci. Nanotechnol., 14, 15 (2014).

    Article  CAS  Google Scholar 

  15. L. M. Renzi and B. R. Hammond, Jr., Ophthalmic and Physiol. Opt., 30, 351 (2010).

    Article  Google Scholar 

  16. R. S. Parker, The FASEB J., 10, 542 (1996).

    Article  CAS  Google Scholar 

  17. Z. Ma, Z. Mao, and C. Gao, Colloids Surf. B: Biointerfaces, 60, 137 (2007).

    Article  CAS  Google Scholar 

  18. N. Noa, Biochem. J., 348, 481 (2000).

    Article  Google Scholar 

  19. S. Khalil, T. Bardawil, C. Stephan, N. Darwiche, O. Abbas, A. G. Kibbi, G. Nemer, and M. Kurban, J. Dermatolog. Treat., 28, 684 (2017).

    Article  CAS  Google Scholar 

  20. H. Nazari, A. Heirani-Tabasi, M. S. Alavijeh, Z. S. Jeshvaghani, E. Esmaeili, S. Hosseinzadeh, F. Mohabatpour, B. Taheri, S. H. A. Tafti, and M. Soleimani, Chemistryselect, 4, 11557 (2019).

    Article  CAS  Google Scholar 

  21. X. Qu, W. Cui, F. Yang, C. Min, H. Shen, J. Bei, and S. Wang, Biomaterials, 28, 9 (2007).

    Article  CAS  Google Scholar 

  22. T. Jacobs, H. Declercq, N. De Geyter, R. Cornelissen, P. Dubruel, C. Leys, and R. Morent, Surf. Coat. Technol., 232, 447 (2013).

    Article  CAS  Google Scholar 

  23. A. Oryan, A. Kamali, A. Moshiri, and M. B. Eslaminejad, Cells Tissues Organs, 204, 59 (2017).

    Article  CAS  Google Scholar 

  24. A. F. Steinert, L. Rackwitz, F. Gilbert, U. Nöth, and R. S. Tuan, Stem Cells Transl. Med., 1, 237 (2012).

    Article  CAS  Google Scholar 

  25. A. Dabouian, H. Bakhshi, S. Irani, and M. Pezeshki-Modaress, RSC Adv., 8, 9941 (2018).

    Article  CAS  Google Scholar 

  26. S. Abedin Dargoush, S. Irani, A. Naderi Sohi, M. Soleimani, and H. Hanaee-Ahvaz, Polym. Adv. Technol., 31, 2569 (2020).

    Article  CAS  Google Scholar 

  27. S.-R. Son, N.-T. B. Linh, H.-M. Yang, and B.-T. Lee, Sci. Technol. Adv. Mater., 14, 015009 (2013).

    Article  CAS  Google Scholar 

  28. A. Ghiaseddin, H. Pouri, M. Soleimani, E. Vasheghani-Farahani, H. A. Tafti, and S. Hashemi-Najafabadi, Biochem. Biophy. Res. Commun., 485, 225 (2017).

    Article  Google Scholar 

  29. F. Sharifi, S. M. Atyabi, D. Norouzian, M. Zandi, S. Irani, and H. Bakhshi, Int. J. Biol. Macromol., 115, 243 (2018).

    Article  CAS  Google Scholar 

  30. A. Sivabalan, B. Meenarathi, S. Palanikumar, and R. Anbarasan, Int. J. Sci. Res. Eng. Technol., 1, 9 (2014).

    Google Scholar 

  31. H.-S. Roh, S.-W. Myung, S.-C. Jung, and B.-H. Kim, J. Nanosci. Nanotechnol., 15, 5585 (2015).

    Article  CAS  Google Scholar 

  32. T. Elzein, M. Nasser-Eddine, C. Delaite, S. Bistac, and P. Dumas, J. Colloid Interface Sci., 273, 381 (2004).

    Article  CAS  Google Scholar 

  33. A. Doğan, S. Demirci, Y. Bayir, Z. Halici, E. Karakus, A. Aydin, E. Cadirci, A. Albayrak, E. Demirci, and A. Karaman, Mater. Sci. Eng.: C, 44, 246 (2014).

    Article  Google Scholar 

  34. Y. Ohya, A. Takahashi, and K. Nagahama, “Polymers in Nanomedicine”, p.65, Springer, 2011.

  35. S. M. Atyabi, F. Sharifi, S. Irani, M. Zandi, H. Mivehchi, and Z. Nagheh, Cell Biochem. Biophys., 74, 181 (2016).

    Article  CAS  Google Scholar 

  36. M. Saeed, H. Mirzadeh, M. Zandi, S. Irani, and J. Barzin, J. Biomed. Mater. Res. Part A, 103, 3927 (2015).

    Article  CAS  Google Scholar 

  37. D. G. Waugh, C. Toccaceli, A. R. Gillett, C.-H. Ng, S. D. Hodgson, and J. Lawrence, Rev. Adhesion and Adhesives, 4, 69 (2016).

    Article  CAS  Google Scholar 

  38. J. Qian, W. Xu, X. Yong, X. Jin, and W. Zhang, Mater. Sci. Eng.: C, 36, 95 (2014).

    Article  CAS  Google Scholar 

  39. N. Thi Hiep, H. Chan Khon, N. Dai Hai, L. Byong-Taek, V. Van Toi, and L. Thanh Hung, J. Biomater. Sci. Polym. Ed., 28, 864 (2017).

    Article  Google Scholar 

  40. E. D. Yildirim, R. Besunder, D. Pappas, F. Allen, S. Güçeri, and W. Sun, Biofabrication, 2, 014109 (2010).

    Article  Google Scholar 

  41. E. H. Harrison, Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821, 70 (2012).

    CAS  Google Scholar 

  42. S. Esmailian, S. Irani, H. Bakhshi, and M. Zandi, Mater. Sci. Eng.: C, 92, 800 (2018).

    Article  CAS  Google Scholar 

  43. A. W. James, B. Levi, Y. Xu, A. L. Carre, and M. T. Longaker, Plast. Reconstr. Surg., 125, 1352 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hadi Bakhshi or Shiva Irani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, Y., Atyabi, S.A., Ghiassadin, A. et al. Cold Atmosphere Plasma Modification on Beta-Carotene-Loaded Nanofibers to Enhance Osteogenic Differentiation. Fibers Polym 23, 18–27 (2022). https://doi.org/10.1007/s12221-021-0033-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0033-y

Keywords

Navigation