Skip to main content
Log in

Mechanical, Morphological and Thermal Properties of Woven Polyester Fiber Reinforced Polylactic Acid (PLA) Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) is derived from renewable sources and is among the most commercially available bioplastics. However, the application of PLA is limited due to its properties, such as poor thermal stability and ductility. The incorporation of woven polyester in the polymeric system has enhanced the properties of PLA. This research determines the mechanical, thermal, and morphological properties of woven polyester fiber-reinforced polylactic acid (PLA) composites. The composites were fabricated using a hot compression method with different fiber contents (%). The fiber contents used are 0 %, 20 %, 30 %, and 40 %. The WP40 composites yielded the highest tensile strength, tensile modulus, and elongation at break, which were recorded at 132.28 MPa, 976 MPa, and 17.86 MPa, respectively. The highest flexural strength for WP/PLA composites was recorded for the WP20 sample at 56 MPa. Moreover, the impact test revealed that WP30 displayed the highest strength at 61 kJ/m2. The SEM micrograph showed good adhesion between the WP-PLA composites since there was less fiber pull-out. The addition of woven polyester has improved the thermal stability and degradation behavior of the composites. All results indicate that the composites have the potential to be used in the automotive component industry. Statistical analysis has been accomplished using one-way ANOVA, displaying significant differences between the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. E. Mouzakis in “Polymer Composites Macro- and Microcomposites”, 1st ed. (S. Thomas, K. Joseph, S. K. Malhotra, K. Goda, and M. S. Sreekala Eds.), Vol. 1, pp.275–291, Wiley-VCH, Germany, 2014.

  2. S. Dixit and P. Verma, Res. J. Chem. Sci., 2, 91 (2012).

    Google Scholar 

  3. A. Alavudeen, N. Rajini, S. Karthikeyan, M. Thiruchitrambalam, and N. Venkateshwaren, Mater. Des., 66, 246 (2015).

    Article  Google Scholar 

  4. B. Ganesh and R. Muralikannan, Int. J. Mater. Sci. Appl., 5, 302 (2016).

    Google Scholar 

  5. M. N. Norizan, K. Abdan, S. M. Sapuan, and R. Mohamed, J. Phys. Sci., 28, 115 (2017).

    Article  Google Scholar 

  6. M. J. Gowtham, R. Ranganatha, N. R. Thyagaraj, and S. M. Somashekar, Int. J. Sci. Res., 5, 2118 (2017).

    Google Scholar 

  7. D. Rouison, M. Sain, and M. Couturier, Compos. Sci. Technol., 64, 629 (2004).

    Article  Google Scholar 

  8. A. Ismail, S. N. A. Khalid, M. H. Zainulabidin, A. Arifin, M. F. Hassasn, M. R. Ibrahim, and M. Rahim, Int. J. Integr. Eng., 10, 49 (2018).

    Google Scholar 

  9. S. Nimanpure, S. A. R. Hashmi, R. Kumar, H. N. Bhargaw, R. Kumar, P. Nair, and A. Naik, Polym. Compos., 40, 664 (2019).

    Article  Google Scholar 

  10. M. H. M. Hamdan, J. P. Siregar, S. Thomas, M. J. Jacob, J. Jaafar, and C. Tezara, Polym. Polym. Compos., 27, 407 (2019).

    Google Scholar 

  11. K. Senthilkumar, N. Saba, M. Chandrasekar, M. Jawaid, N. Rajini, O. Y. Alothman, and S. Siengchin, Constr. Build. Mater., 195, 423 (2019).

    Article  Google Scholar 

  12. K. R. Chow, N. Mohamad, and S. C. Koay, 13th Int. Eng. Res. Conf. (13th Eureca 2019), Vol. 2233, 2020.

  13. S. Sathees Kumar, Data Br., 28, 105054 (2020).

    Article  Google Scholar 

  14. C. Saricam and N. Okur, Polyester Usage for Automotive Applications, https://www.intechopen.com/books/polyester-production-characterization-and-innovative-applications/polyester-usage-for-automotive-applications (Accessed December 16, 2020).

  15. T. Matsuo in “Polyesters and Polyamides” (B. L. Deopura, R. Alagirusamy, M. Joshi, and B. Gupta Eds.), pp.525–541, Woodhead Publishing Limited, Cambridge, 2008.

  16. W. Sujaritjun, P. Uawongsuwan, W. Pivsa-Art, and H. Hamada, Energy Procedia, 34, 664 (2013).

    Article  Google Scholar 

  17. L. Quiles-Carrillo, N. Montanes, A. Jorda-Vilaplana, R. Balart, and S. Torres-Giner, J. Appl. Polym. Sci., 136, 16 (2019).

    Article  Google Scholar 

  18. K. Behera, V. Sivanjineyulu, Y. H. Chang, and F. C. Chiu, Polym. Degrad. Stab., 154, 248 (2018).

    Article  Google Scholar 

  19. Y. Liu, H. Wei, Z. Wang, Q. Li, and N. Tian, Polymers, 10, 1178 (2018).

    Article  Google Scholar 

  20. P. K. Bajpai, I. Singh, and J. Madaan, J. Thermoplast. Compos. Mater., 27, 52 (2014).

    Article  Google Scholar 

  21. E. Castro-Aguirre, F. Iñiguez-Franco, H. Samsudin, X. Fang, and R. Auras, Adv. Drug Deliv. Rev., 107, 333 (2016).

    Article  Google Scholar 

  22. A. P. Gupta and V. Kumar, Eur. Polym. J., 43, 4053 (2007).

    Article  Google Scholar 

  23. K. Madhavan Nampoothiri, N. R. Nair, and R. P. John, Bioresour. Technol., 101, 8493 (2010).

    Article  Google Scholar 

  24. R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004).

    Article  Google Scholar 

  25. L. T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci., 33, 820 (2008).

    Article  Google Scholar 

  26. Y. Jiang, C. Yan, K. Wang, D. Shi, Z. Liu, and M. Yang, Materials (Basel), 12, 1663 (2019).

    Article  Google Scholar 

  27. Ł. Łopusiewicz, F. Jedra, and M. Mizieińska, Polymers (Basel), 10, 5 (2018).

    Article  Google Scholar 

  28. L. Zhang, S. Lv, C. Sun, L. Wan, H. Tan, and Y. Zhang, Polymers (Basel), 9, 591 (2017).

    Article  Google Scholar 

  29. T. Radusin, A. Tomsik, L. Saric, I. Ristic, M. G. Baschetti, M. Minelli, and A. Novakovic, Polym. Compos., 40, 893 (2019).

    Article  Google Scholar 

  30. D. Notta-Cuvier, J. Odent, R. Delille, M. Murariu, F. Lauro, J. M. Raquez, B. Bennani, and P. Dubois, Polym. Test., 36, 1 (2014).

    Article  Google Scholar 

  31. K. Behera, Y. H. Chang, F. C. Chiu, and J. C. Yang, Polym. Test., 60, 132 (2017).

    Article  Google Scholar 

  32. N. Graupner, A. S. Herrmann, and J. Müssig, Compos. Part A Appl. Sci. Manuf., 40, 810 (2009).

    Article  Google Scholar 

  33. K. Suzuki, J. Solid Mech. Mater. Eng., 7, 439 (2013).

    Article  Google Scholar 

  34. T. R. Rigolin, M. C. Takahashi, D. L. Kondo, and S. H. P. Bettini, J. Polym. Environ., 27, 1096 (2019).

    Article  Google Scholar 

  35. I. S. M. A. Tawakkal, R. A. Talib, K. Abdan, and C. N. Ling, BioResources, 7, 1643 (2012).

    Article  Google Scholar 

  36. H. Y. Cheung, K. T. Lau, Y. F. Pow, Y. Q. Zhao, and D. Hui, Compos. Part B Eng., 41, 223 (2010).

    Article  Google Scholar 

  37. S. F. Zhafer, A. R. Rozyanty, S. B. S. Shahnaz, and L. Musa, AIP Conf. Proc., 1835, 020019 (2017).

    Article  Google Scholar 

  38. N. M. Nurazzi, A. Khalina, S. M. Sapuan, and R. A. Ilyas, Polimery/Polymers, 64, 665 (2019).

    Google Scholar 

  39. S. M. Sapuan, H. S. Aulia, R. A. Ilyas, A. Atiqah, T. T. Dele-Afolabi, M. N. Nurazzi, A. B. M. Supian, and M. S. N. Atikah, Polymers (Basel), 12, 2211 (2020).

    Article  Google Scholar 

  40. H. A. Aisyah, M. T. Paridah, S. M. Sapuan, R. A. Ilyas, A. Khalina, N. M. Nurazzi, S. H. Lee, and C. H. Lee, Polymers (Basel), 13, 471 (2021).

    Article  Google Scholar 

  41. P. Samyn, J. Compos. Mater., 51, 221 (2017).

    Article  Google Scholar 

  42. M. S. Kim, H. K. Byun, S. W. Jeong, S. H. Hong, Y. K. Joo, J. S. Song, K. T. Kim, J. K. Lee, C. J. Lee, and J. Y. Lee, Synth. Met., 126, 233 (2002).

    Article  Google Scholar 

  43. M. T. Isa, P. A. P. Mamza, T. K. Bello, and A. U. Ndanusa, Niger. J. Basic Appl. Sci., 31, 1652 (2008).

    Google Scholar 

  44. A. H. A. Rashid, C. T. Seang, R. Ahmad, and M. J. Mustapha, Appl. Mech. Mater., 271, 81 (2013).

    Google Scholar 

  45. H. Özdemir and B. M. Içten, J. Text. Inst., 109, 133 (2018).

    Article  Google Scholar 

  46. L. Uma Devi, S. S. Bhagawan, and S. Thomas, J. Appl. Polym. Sci., 64, 1739 (1997).

    Article  Google Scholar 

  47. A. V. Ratna Prasad and K. Mohana Rao, Mater. Des., 32, 4658 (2011).

    Article  Google Scholar 

  48. J. Hossen, H. A. Begum, M. M. Uddin, M. T. Isla, and M. M. Islam, Asian J. Text., 8, 13 (2018).

    Article  Google Scholar 

  49. A. Athijayamani, M. Thiruchitrambalam, U. Natarajan, and B. Pazhanivel, Mater. Sci. Eng. A, 517, 344 (2009).

    Article  Google Scholar 

  50. ASTM, “ASTM D3039/D3039M, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”, Annu. B. ASTM Stand., 2014.

  51. ASTM, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. D790”, Annu. B. ASTM Stand., 2002.

  52. ASTM, “ASTM D256, Determining the Izod Pendulum Impact Resistance of Plastics”, [Online]. Available: https://www.astm.org (2004).

  53. A. Porras and A. Maranon, Compos. Part B Eng., 43, 2782 (2012).

    Article  Google Scholar 

  54. I. M. Misnon, M. M. Islam, J. A. Epaarachchi, K.-T. Lau, and H. Wang, Adv. Res. Text. Eng., 1, 1004 (2016).

    Google Scholar 

  55. G. Wang, D. Zhang, B. Li, G. Wan, G. Zhao, and A. Zhang, Int. J. Biol. Macromol., 129, 448 (2019).

    Article  Google Scholar 

  56. S. Das, Carbohydr. Polym., 172, 60 (2017).

    Article  Google Scholar 

  57. N. K. Naik and P. S. Shembekar, J. Compos. Mater., 26, 2196 (1992).

    Article  Google Scholar 

  58. R. Vaidyanathan and Y. A. Gowayed, Polym. Compos., 17, 305 (1996).

    Article  Google Scholar 

  59. F. F. Yildirim, O. Avinc, and A. Yavas, “Elastic Polyester”, 19th International Conference on Structure and Structural Mechanics of Textile Fabrics (STRUTEX), 2012.

  60. M. Li, Y. Chen, H. Jiang, J. Li, X. Li, and H. Wang, Mater. Today Proc., 16, 1480 (2019).

    Article  Google Scholar 

  61. N. V. Rachchh, P. S. Ujeniya, and R. K. Misra, Procedia Mater. Sci., 6, 1396 (2014).

    Article  Google Scholar 

  62. T. S. Bindusara, B. S. Keerthi Gowda, and R. Velmurugan, Mater. Sci. Eng., 376, 012070 (2018).

    Google Scholar 

  63. X. Chen, J. Ren, N. Zhang, S. Gu, and J. Li, J. Reinf. Plast. Compos., 34, 28 (2015).

    Article  Google Scholar 

  64. A. M. Radzi, S. M. Sapuan, M. Jawaid, and M. R. Mansor, Fiber. Polym., 18, 1353 (2017).

    Article  Google Scholar 

  65. S. D. Salman, Z. Leman, M. T. H. Sultan, M. R. Ishak, and F. Cardona, Int. J. Polym. Sci., 2016, 7828451 (2016).

    Article  Google Scholar 

  66. H. P. S. Abdul Khalil, S. Hanida, C. W. Kang, and N. A. Nik Fuaad, J. Reinf. Plast. Compos., 26, 203 (2007).

    Article  Google Scholar 

  67. A. K. Lau and K. H. Y. Cheung in “Natural Fiber Reinforced Biodegradable and Bioresorbable Polymer Composites”, 1st ed. (A. K. Lau and A. P. Y. Hung Eds.), pp.1–18, Woodhead Publishing, United Kingdom, 2017.

  68. K. Behera, V. Sivanjineyulu, Y. H. Chang, and F. C. Chiu, Polym. Degrad. Stab., 154, 248 (2018).

    Article  Google Scholar 

  69. H. Ye, Y. Zhang, and Z. Yu, BioResources, 12, 4810 (2017).

    Article  Google Scholar 

  70. M. Eili, K. Shameli, N. A. Ibrahim, and W. M. Z. Wan Yunus, Int. J. Mol. Sci., 13, 7938 (2012).

    Article  Google Scholar 

  71. M. S. Huda, L. T. Drzal, M. Misra, and A. K. Mohanty, J. Appl. Polym. Sci., 102, 4856 (2006).

    Article  Google Scholar 

  72. A. C. Garay, V. Heck, A. J. Zattera, J. A. Souza, and S. C. Amico, J. Reinf. Plast. Compos., 30, 1213 (2011).

    Article  Google Scholar 

  73. E. Kandare, B. K. Kandola, D. Price, S. Nazaré, and R. A. Horrocks, Polym. Degrad. Stab., 93, 1996 (2008).

    Article  Google Scholar 

  74. A. N. Frone, C. A. Nicolae, R. A. Gabor, and D. M. Panaitescu, Polym. Degrad. Stab., 121, 385 (2015).

    Article  Google Scholar 

  75. D. Battegazzore, A. Noori, and A. Frache, J. Compos. Mater., 53, 783 (2019).

    Article  Google Scholar 

  76. S. Farah, D. G. Anderson, and R. Langer, Adv. Drug Deliv. Rev., 107, 367 (2016).

    Article  Google Scholar 

  77. S. Su, R. Kopitzky, S. Tolga, and S. Kabasci, Polymers (Basel), 11, 1193 (2019).

    Article  Google Scholar 

  78. M. A. Cuiffo, J. Snyder, A. M. Elliott, N. Romero, S. Kannan, and G. P. Halada, Appl. Sci., 7, 579 (2017).

    Article  Google Scholar 

  79. Á. Kmetty and K. Litauszki, Polymers (Basel), 12, 463 (2020).

    Article  Google Scholar 

  80. L. A. Pruitt in “Comprehensive Biomaterials”, 1st ed. (P. Ducheyne, K. Healy, D. W. Hutmacher, D. W. Grainger, and C. J. Kirkpatrick Eds.), pp.373–379, Elsevier Science, Netherlands, 2011.

Download references

Acknowledgments

The authors would like to thank the Universiti Putra Malaysia through UPM-IPS Grant (GP-IPS/2018/9663200), German Academic Exchange Service (DAAD), and Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) for their financial support. All the technical staff in the Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, are highly appreciated for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sapuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azlin, M.N.M., Sapuan, S.M., Zuhri, M.Y.M. et al. Mechanical, Morphological and Thermal Properties of Woven Polyester Fiber Reinforced Polylactic Acid (PLA) Composites. Fibers Polym 23, 234–242 (2022). https://doi.org/10.1007/s12221-021-0139-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0139-2

Keywords

Navigation