Skip to main content
Log in

The Effect of Stacking Sequence on High-velocity Impact Resistance of Hybrid Woven Reinforced Composites: Experimental Study and Numerical Simulation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, the effects of the stacking sequence of layup processing and creating space between layers of hybrid composites on the impact behavior were studied. The hybrid woven composites were manufactured using three different woven layers of kevlar, carbon, and glass fibers. Results show that the impact resistance of hybrid composites was better when the kevlar layer was located on the impact surface than when glass or carbon layers were placed on the impact surface. The absorbed energy of the impactor by the 3K-3G-3C sample was about 57 % higher than 3C-3G-3K and samples. Also, the absorbed energy by the 2K-2C-2K-2C sample was 67 % higher than the 4C-4K samples. The impact resistance of the hybrid woven layer composite decreases with creating space between layers. The absorbed energy by the spaced plate sample was less about 52 % than that non-spaced plate sample. Mathematical equations were generated to plot a simple geometry of woven fabric. A homogenization method was applied to finite element analyses using the unit-cell of the generated geometrical model for each composite sample. The presented methods of finite element simulations had an acceptable accuracy in predicting the high-velocity impact behavior of composites samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Silva, C. Cismaşiu, and C. Chiorean, Int. J. Impact Eng., 31, 289 (2005).

    Article  Google Scholar 

  2. N. Naik, P. Shrirao, and B. Reddy, Int. J. Impact Eng., 32, 1521 (2006).

    Article  Google Scholar 

  3. S. Chocron, A. J. Carpenter, N. L. Scott, R. P. Bigger, and K. Warren, Int. J. Impact Eng., 131, 39 (2019).

    Article  Google Scholar 

  4. J. López-Puente and S. Li, Int. J. Impact Eng., 48, 54 (2012).

    Article  Google Scholar 

  5. S. Ahmed, X. Zheng, D. Zhang, and L. Yan, Appl. Compos. Mater., 27, 285 (2020).

    Article  CAS  Google Scholar 

  6. M. K. Dewangan and S. Panigrahi, Fiber. Polym., 21, 2389 (2020).

    Article  Google Scholar 

  7. M. K. Dewangan and S. Panigrahi, J. Ind. Text., 1528083720970168 (2020).

  8. L. Alonso, C. Navarro, and S. K. García-Castillo, Mech. Adv. Mater. Struct., 26, 1001 (2019).

    Article  CAS  Google Scholar 

  9. A. S. Yaghoubi and B. Liaw, J. Compos. Mater., 48, 2011 (2014).

    Article  Google Scholar 

  10. C. Kaboglu, I. Mohagheghian, J. Zhou, Z. Guan, W. Cantwell, S. John, B. R. Blackman, A. J. Kinloch, and J. P. Dear, J. Mater. Sci., 53, 4209 (2018).

    Article  CAS  Google Scholar 

  11. M. Bulut, A. Erkliğ, and E. Yeter, J. Compos. Mater., 50, 1875 (2016).

    Article  CAS  Google Scholar 

  12. J. H. Song, Fiber. Polym., 17, 600 (2016).

    Article  Google Scholar 

  13. N. Pagano and R. B. Pipes, J. Compos. Mater., 5, 50 (1971).

    Article  Google Scholar 

  14. A. Muc, Mech. Compos. Mater., 52, 211 (2016).

    Article  Google Scholar 

  15. Y. Zhou, X. Gong, S. Zhang, and A. Xu, Fiber. Polym., 16, 2663 (2015).

    Article  Google Scholar 

  16. S. Amico, C. Angrizani, and M. Drummond, J. Reinf. Plas. Compos., 29, 179 (2010).

    Article  CAS  Google Scholar 

  17. D. F. Adams, J. Mater. Sci., 10, 1591 (1975).

    Article  CAS  Google Scholar 

  18. M. Tehrani-Dehkordi, H. Nosraty, and M.-H. Rajabzadeh, Fiber. Polym., 16, 918 (2015).

    Article  CAS  Google Scholar 

  19. A. Karimzadeh, M. Yahya, M. Abdullah, and K. Wong, Fiber. Polym., 21, 1583 (2020).

    Article  CAS  Google Scholar 

  20. R. Park and J. Jang, Polym. Compos., 21, 231 (2000).

    Article  CAS  Google Scholar 

  21. A. Riccio, G. Mozzillo, and F. Scaramuzzino, Appl. Compos. Mater., 20, 249 (2013).

    Article  Google Scholar 

  22. S. K. García-Castillo, B. L. Buitrago, and E. Barbero, Polym. Compos., 32, 290 (2011).

    Article  Google Scholar 

  23. M. Özen, Mech. Compos. Mater., 52, 759 (2017).

    Article  Google Scholar 

  24. K.-Y. Kim and L. Ye, J. Mater. Sci., 47, 7280 (2012).

    Article  CAS  Google Scholar 

  25. M. H. Pol and G. Liaghat, Polym. Compos., 37, 1173 (2016).

    Article  CAS  Google Scholar 

  26. J. Hearle and O. Bose, J. Text. Inst. Trans., 57, T294 (1966).

    Article  Google Scholar 

  27. J. W. Hearle, P. Grosberg, and S. Backer, “Structural Mechanics of Fibres, Yarns and Fabrics”, Wiley-Interscience, New York, 1969.

    Google Scholar 

  28. Y. Chen, S. Hou, K. Fu, X. Han, and L. Ye, Compos. Struct., 168, 322 (2017).

    Article  Google Scholar 

  29. Y. Chen, X. Han, S. Hou, K. Fu, and L. Ye, “21th International Conference on Composite Materials”, Xi’an, China, 2017.

  30. Y. Wang and D. Zhao, Composites, 26, 115 (1995).

    Article  CAS  Google Scholar 

  31. M. Aktaş and R. Karakuzu, Polym. Compos., 30, 1437 (2009).

    Article  Google Scholar 

  32. M. K. Dubey and P. B. Prajwal, Int. J. Mech. Eng., 41, 2051 (2013).

    Google Scholar 

  33. M. Herráez, A. Fernández, C. Lopes, and C. González, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20150274 (2016).

    Article  Google Scholar 

  34. H. Ullah, A. R. Harland, and V. V. Silberschmidt, Comput. Mater. Sci., 64, 130 (2012).

    Article  CAS  Google Scholar 

  35. V. Phadnis, K. Pandya, N. Naik, A. Roy, and V. Silberschmidt, J. Phys. Conf. Ser., 451, 012019 (2013).

    Article  Google Scholar 

  36. R. S. Sikarwar, N. S. Rajput, R. Velmurugan, and S. Naik, Mater. Today: Proc., 4, 2599 (2017).

    Google Scholar 

  37. D. S. Rao, P. R. Reddy, and S. Venkatesh, Procedia Eng., 173, 1678 (2017).

    Article  Google Scholar 

  38. S. Singh and I. Partridge, Compos. Sci. Technol., 55, 319 (1995).

    Article  CAS  Google Scholar 

  39. J. C. Smith, F. L. McCrackin, and H. F. Schiefer, Text. Res. J., 28, 288 (1958).

    Article  CAS  Google Scholar 

  40. D. Roylance, A. Wilde, and G. Tocci, Text. Res. J., 43, 34 (1973).

    Article  Google Scholar 

  41. J. Cole, C. Dougherty, and J. Huth, “Constant Strain Waves in Strings”, Rand Corp Santa Monica CA, 1953.

    Book  Google Scholar 

  42. J. C. Smith, J. M. Blandford, and H. F. Schiefer, Text. Res. J., 30, 752 (1960).

    Article  Google Scholar 

  43. D. Zhu, B. Mobasher, J. Erni, S. Bansal, and S. Rajan, Compos. Part A: Appl. Sci. Manuf., 43, 2021 (2012).

    Article  CAS  Google Scholar 

  44. Y. Zhou, Y. Wang, Y. Xia, and S. Jeelani, Mater. Lett., 64, 246 (2010).

    Article  CAS  Google Scholar 

  45. J. D. Seidt, T. A. Matrka, A. Gilat, and G. B. McDonald, “Dynamic Behavior of Materials”, Vol. 1, p.187, Springer, 2011.

    Google Scholar 

  46. A. D. Bunsell, J. Mater. Sci., 10, 1300 (1975).

    Article  CAS  Google Scholar 

  47. M. G. Babu, R. Velmurugan, and N. Gupta, Latin Am. J. Solids Struct., 3, 21 (2006).

    Google Scholar 

Download references

Acknowledgment

The authors fully funded this project. No funding has been received from other sources to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koorosh Delavari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delavari, K., Safavi, A. The Effect of Stacking Sequence on High-velocity Impact Resistance of Hybrid Woven Reinforced Composites: Experimental Study and Numerical Simulation. Fibers Polym 23, 184–195 (2022). https://doi.org/10.1007/s12221-021-0257-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0257-x

Keywords

Navigation