Skip to main content

Advertisement

Log in

Warming and predator drive functional responses of three subtropical cladocerans

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Climate warming can change species performance and ecological interactions, which alter the energy flow in aquatic ecosystems. Here, we set microcosms to analyse how warming and predator affect the functional responses of three subtropical cladocerans (Ceriodaphnia silvestrii, Daphnia laevis, and Simocephalus serrulatus). Predator treatments included young-fish presence, young-fish absence, and fish chemical cues. Warming treatments included a control at 22 °C and others at + 2 °C and + 4 °C. We expected that warming would increase cladocerans’ growth, reproduction, and feeding rates by metabolic demands, which also would increase the predation of fish on cladocerans and cladocerans on phytoplankton. The effects of warming and predator on cladocerans functional responses (secondary productivity and grazing rates) were tested through Linear Mixed Models, Generalized Linear Model, and Piecewise Structural Equation Modeling (piecewise SEM). Cladocerans' secondary productivity and grazing were primarily dictated by fish predation and chemical cues, but warming also reduced the grazing of cladocerans on phytoplankton. Warming and predation differently affected the secondary productivity of species depending on their body size, S. serrulatus (the largest-bodied) had reduced rates at high temperatures, D. laevis (the medium-bodied) in young-fish presence, and C. silvestrii (the smallest-bodied) at both treatments. The three species increased secondary productivity in response to fish chemical cues. Our results clarify the unique and combined effect of global warming and predator on the energy availability inside freshwater food-webs. Warming and predator have the potential to reduce cladocerans' secondary productivity and increase primary productivity in subtropical ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abo-Taleb H (2019) Importance of plankton to fish community. In: Biological Research in Aquatic Science. IntechOpen Limited, London, pp 1–10

  • Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science (80- ) 297:1545–1548

    Article  CAS  Google Scholar 

  • Antiqueira PAP, Petchey OL, Romero GQ (2018) Warming and top predator loss drive ecosystem multifunctionality. Ecol Lett 21:72–82. https://doi.org/10.1111/ele.12873

    Article  PubMed  Google Scholar 

  • Auer B, Elzer U, Arndt H (2004) Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. J Plankton Res 26:697–709. https://doi.org/10.1093/plankt/fbh058

    Article  Google Scholar 

  • Bolar K (2019) STAT: interactive document for working with basic statistical analysis in R

  • Brans KI, Jansen M, Vanoverbeke J et al (2017) The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob Change Biol 23:5218–5227. https://doi.org/10.1111/gcb.13784

    Article  Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, body size and composition of plankton. Science 150:28–35

    Article  CAS  Google Scholar 

  • Brooks BW, Lazorchak JM, Howard MD et al (2016) Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ Toxicol Chem 35:6–13

    Article  CAS  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP et al (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789. https://doi.org/10.1890/03-9000

    Article  Google Scholar 

  • Chase JM, Abrams PA, Grover JP et al (2002) The interaction between predation and competition: a review and synthesis. Ecol Lett 5:302–315. https://doi.org/10.1046/j.1461-0248.2002.00315.x

    Article  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci 106:12788–12793

    Article  CAS  Google Scholar 

  • De-Meester L, Stoks R, Brans KI (2018) Genetic adaptation as a biological buffer against climate change: potential and limitations. Integr Zool 13:372–391. https://doi.org/10.1111/1749-4877.12298

    Article  Google Scholar 

  • Dias J, Miracle M, Bonecker C (2017) Do water levels control zooplankton secondary production in Neotropical floodplain lakes? Fundam Appl Limnol Arch Für Hydrobiol 190:49–62. https://doi.org/10.1127/fal/2017/0869

    Article  Google Scholar 

  • Ferrari MCO, Wisenden BD, Chivers DP (2010) Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88:698–724. https://doi.org/10.1139/Z10-029

    Article  Google Scholar 

  • Fuentes-Reines JM, Elmoor-Loureiro LMA (2015) Annotated checklist and new records of Cladocera from the Ciénaga el convento, Atlántico-Colombia. Panam J Aquat Sci 10:189–202

    Google Scholar 

  • Gauld DT (1951) The grazing rate of planktonic copepods. J Mar Biol Assoc UK 29:695–706. https://doi.org/10.1017/S0025315400052875

    Article  Google Scholar 

  • Gurevitch JJ, Morrison A, Hedges LV (2000) The interaction between competition and predation: a meta-analysis of field experiments. Am Nat 155:435–453

    Article  Google Scholar 

  • Gyllstrom M, Hansson LA, Jeppesen E et al (2005) The role of climate in shaping zooplankton communities of shallow lakes. Limnol Oceanogr 50:2008–2021

    Article  Google Scholar 

  • Hébert M-PP, Beisner BE, Maranger R (2017) Linking zooplankton communities to ecosystem functioning: toward an effect-Trait framework. J Plankton Res 39:3–12. https://doi.org/10.1093/plankt/fbw068

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M et al (2018) Impacts of 1.5°C global warming on natural and human systems. In: Masson-Delmotte V, Zhai P, Pörtner H-O et al (eds) Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening, pp 175–311

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363

    Article  Google Scholar 

  • Huntley ME, Lopez MDG (1992) Temperature-dependent production of marine copepod: a global synthesis. Am Nat 140:201–242

    Article  CAS  Google Scholar 

  • Iglesias C, Mazzeo N, Meerhoff M et al (2011) High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667:133–147. https://doi.org/10.1007/s10750-011-0645-0

    Article  Google Scholar 

  • Im H, Na J, Jung J (2020) The effect of food availability on thermal stress in Daphnia magna: trade-offs among oxidative stress, somatic growth, and reproduction. Aquat Ecol 54:1201–1210

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contrib work groups I, II III to Fifth Assess Rep Intergov Panel Clim Chang Core Writ Team, Pachauri RK, Meyer LA IPCC, Geneva, Switzerland, vol 151 pp 1–112. https://doi.org/10.1017/CBO9781107415324

  • Jeppesen E, Jensen JP, Søndergaard M et al (2000) Trophic structure, species richness and diversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45:201–218

    Article  CAS  Google Scholar 

  • Jeppesen E, Meerhoff M, Holmgren K et al (2010) Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646:73–90. https://doi.org/10.1007/s10750-010-0171-5

    Article  CAS  Google Scholar 

  • Kratina P, Greiga HS, Thompsona PL et al (2012) Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology 93:1421–1430

    Article  Google Scholar 

  • Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579. https://doi.org/10.1111/2041-210X.12512

    Article  Google Scholar 

  • Lemke AM, Benke AC (2009) Spatial and temporal patterns of microcrustacean assemblage structure and secondary production in a wetland ecosystem. Freshw Biol 54:1406–1426. https://doi.org/10.1111/j.1365-2427.2009.02193.x

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P et al (2001) Ecology: biodiversity and ecosystem functioning: current knowledge and future challenges. Science (80- ) 294:804–808. https://doi.org/10.1126/science.1064088

    Article  CAS  Google Scholar 

  • Meerhoff M, Clemente JM, de Mello FT et al (2007) Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Glob Chang Biol 13:1888–1897. https://doi.org/10.1111/j.1365-2486.2007.01408.x

    Article  Google Scholar 

  • Meerhoff M, Teixeira-de Mello F, Kruk C et al (2012) Environmental warming in shallow lakes. A review of potential changes in community structure as evidenced from space-for-time substitution approaches

  • Moore M, Folt C (1993) Zooplankton body size and community structure: effects of thermal and toxicant stress. Trends Ecol Evol 8:178–183

    Article  CAS  Google Scholar 

  • Müller H (1972) Wachstum and phosphatbedarf von Nitzschia actinastroides (Lemn.) v. Goor in statischer und homokontiuierliecher kultur unter phosphatlimitierung. Arch Fur Hydrobiol Suppl 38:399–484

    Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM et al (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:3–8. https://doi.org/10.1371/journal.pbio.1000178

    Article  CAS  Google Scholar 

  • O’Connor MI, Selig ER, Pinsky ML, Altermatt F (2012) Toward a conceptual synthesis for climate change responses. Glob Ecol Biogeogr 21:693–703. https://doi.org/10.1111/j.1466-8238.2011.00713.x

    Article  Google Scholar 

  • Orlova-Bienkoswskaja MJ (2001) Cladocera: Anomopoda—Daphniidae: genus Simocephalus. Guides to the identification of the Microinvertebrates of Continental waters of the world. Backhuys Publishers

  • Orlova-bienkowskaja M (2001) Guides to the identification of the microinvertebrates of the continental waters of the world (Daphniidae:Simocephalus). Backhuys Publishers, Leiden

    Google Scholar 

  • Parmesan C (2007) Influence of species, latitudes and methodologies on estimate of phenological response to global warming. Glob Chang Biol 13:1860–1872

    Article  Google Scholar 

  • Persson J, Brett MT, Vrede T, Ravet JL (2007) Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos 116:1152–1163

    Article  Google Scholar 

  • Picapedra PHS, Sanches PV, Lansac-Tôha FA (2018) Effects of light-dark cycle on the spatial distribution and feeding activity of fish larvae of two co-occurring species (Pisces: Hypophthalmidae and sciaenidae) in a neotropical floodplain lake. Braz J Biol 78:763–772. https://doi.org/10.1590/1519-6984.179070

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S et al (2020) nlme: linear and nonlinear mixed effects models. R Packag Version 3(1):144

    Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science (80-) 315:95–97

    Article  Google Scholar 

  • R (2020) R Core Team: a language and environment for statistical computing. https://www.r-project.org

  • Rodgher S, Lombardi AT, da Graça Gama Melão M, Tonietto AE (2008) Change in life cycle parameters and feeding rate of Ceriodaphnia silvestrii Daday (Crustacea, Cladocera) exposure to dietary copper. Ecotoxicology 17:826–833. https://doi.org/10.1007/s10646-008-0245-6

    Article  CAS  PubMed  Google Scholar 

  • Santangelo JM, Soares BN, Paes T et al (2018) Effects of vertebrate and invertebrate predators on the life history of Daphnia similis and Moina macrocopa (Crustacea: Cladocera). Ann Limnol Int J Limnol 54:25. https://doi.org/10.1051/limn/2018015

    Article  Google Scholar 

  • Sarma SSS, Nandini S, Gulati RD (2005) Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542:315–333. https://doi.org/10.1007/s10750-004-3247-2

    Article  Google Scholar 

  • Sarmento H, Unrein F, Isumbisho M et al (2008) Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, Eastern Africa. Freshw Biol 53:756–771

    Article  Google Scholar 

  • Savage VM, Gillooly JF, Brown JH et al (2004) Effects of body size and temperature on population growth. Am Nat 163:429–441. https://doi.org/10.1086/381872

    Article  PubMed  Google Scholar 

  • Scherer AE, Smee DL (2016) A review ofpredator diet effects on prey defensive responses. Chemoecology 26:83–100

    Article  CAS  Google Scholar 

  • Settele J, Scholes R, Betts R et al (2014) Terrestrial and inland water systems. In: Field CB, Barros VR, Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. The, part a: global and sectoral aspects. Contribution of working group II to the fifth assessment report of intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 271–359

  • Shurin JB, Clasen JL, Greig HS et al (2012) Warming shifts top-down and bottom-up control of pond food web structure and function. Philos Trans R Soc B Biol Sci 367:3008–3017. https://doi.org/10.1098/rstb.2012.0243

    Article  Google Scholar 

  • Šorf M, Davidson TA, Brucet S et al (2015) Zooplankton response to climate warming: a mesocosm experiment at contrasting temperatures and nutrient levels. Hydrobiologia 742:185–203. https://doi.org/10.1007/s10750-014-1985-3

    Article  CAS  Google Scholar 

  • Urban MC, Bocedi G, Hendry AP et al (2016) Improving the forecast for biodiversity under climate change. Science (80- ) 353:1113–1124. https://doi.org/10.1126/science.aad8466

    Article  CAS  Google Scholar 

  • van de Waal DB, Verschoor AM, Verspagen JM et al (2010) Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front Ecol Environ 8:145–152

    Article  Google Scholar 

  • Vanvelk H, Govaert L, van den Berg EM et al (2020) Interspecific differences, plastic and evolutionary responses to a heat wave in three co-occurring Daphnia species. Limnol Oceanogr. https://doi.org/10.1002/lno.11675

    Article  Google Scholar 

  • Verbitsky VB, Verbitskaya TI (2011) The dynamics of abundance of Simocephalus vetulus (O.F. Müller, 1776) (Crustacea, Cladocera) under acyclic stepwise changes in temperature. Inl Water Biol 4:47–55. https://doi.org/10.1134/S1995082911010135

    Article  Google Scholar 

  • Visser PM, Verspagen JMH, Sandrini G et al (2016) How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–159. https://doi.org/10.1016/j.hal.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  • Voigt W, Perner J, Davis AJ et al (2003) Trophic levels are differentially sensitive to climate. Ecology 84:2444–2453

    Article  Google Scholar 

  • Wickham H, Chang W, Henry L, et al (2019) Create elegant data visualisations using the grammar of graphics (ggplot2). 227

  • Winberg GG, Pechen GA, Shushkina EA (1965) The production of planktonic crustaceans in three 25 different types of lake. Zool Zhurnal 44:676–688

    Google Scholar 

  • Zarnetske PL, Skelly DK, Urban MC (2012) Biotic multipliers of climate change. Science (80- ) 336:1516–1518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES) for financial support. F.A.L.T. is grateful for the research productivity grant provided by the Brazilian National Council of Research and Development (CNPq), and M.G.G.M. is grateful for the grant provided by São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francieli de Fátima Bomfim .

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Vinicius Farjalla.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bomfim , ., Melão , ., Gebara, R.C. et al. Warming and predator drive functional responses of three subtropical cladocerans. Aquat Ecol 55, 903–914 (2021). https://doi.org/10.1007/s10452-021-09870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-021-09870-5

Keywords

Navigation