Skip to main content
Log in

Diurnal kinetics related to physiological parameters in Pistacia vera L. versus Pistacia atlantica Desf. under water stress conditions

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

This study tests the diurnal variations of water status, leaf gas exchanges and chlorophyll fluorescence in Pistacia vera L. (P. vera L.) and Pistacia atlantica Desf. (P. atlantica Desf.) seedlings. At 40% of field capacity, diurnal variations in water uptake, relative water content (RWC) were estimated every hour between 5:00 am and 7:00 pm. The daily course of light, temperature, photosynthesis (A), stomatal conductance (gs), transpiration rate (E), intrinsic water use efficiency (A/gs), mesophyll efficiency (A/Ci), internal CO2 concentration (Ci) and chlorophyll fluorescence were measured every 3 h from 05:30 am to 7:30 pm in irrigated and stressed seedlings of the two studied species. The results showed a significant variation in all surveyed parameters over diurnal cycle. The stressed seedlings of P. atlantica exhibited considerably higher RWC, water uptake, A, gs, E, A/gs and A/Ci over diurnal cycles compared to P. vera stressed seedlings. In contrast, P. vera was more sensitive to water stress and excess light and temperature over the diurnal cycle. The midday stomatal conductance and photosynthesis decrease was more likely the result of low RWC caused by high transpiration rates, stomatal closture and photoinhibition. Photoinhibition is a protective mechanism of PSII, rather than a result of photo-damage of photosynthetic apparatus. P. atlantica revealed an important physiological feature that is maintaining photosynthesis at midday compared to P. vera. This might be due to internal regulation through several mechanisms mainly better osmotic adjustment, photoprotective mechanisms of PSII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

A/Ci:

Mesophyll efficiency

A/gs:

Intrinsic water uses efficiency

A:

Net photosynthesis

Ci:

Internal CO2 concentration

DW:

Dry weight

E:

Transpiration rate

FW:

Fresh weight

gs:

Stomatal conductance

OJIP:

Polyphasic fluorescence transients

PSII:

Photosystem II

RWC:

Relative water content

TW:

Turgid weight

FM:

Maximum fluorescence

P:

Maximum value of chlorophyll fluorescence under saturating light (P-level)

J:

Chlorophyll fluorescence value at 2 ms (J-level)

I:

Chlorophyll fluorescence value at 30 ms (I-level)

F0:

Minimal fluorescence

Fs:

Steady-state fluorescence

References

  • Aro EM, McCaffery S, Anderson JM (1994) Recovery from photoinhibition in peas (Pisum sativum L.) acclimated to varying growth irradiances (role of D1 protein turnover). Plant Physiol 104:1033–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber J, Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci 17(2):61–66

    Article  CAS  PubMed  Google Scholar 

  • Ben Hamed S, Lefi E, Chaieb M (2016) Physiological responses of Pistacia vera L. versus Pistacia atlantica Desf. to water stress conditions under arid bioclimate in Tunisia. Sci Hortic 203:224–230

    Article  CAS  Google Scholar 

  • Ben Hamed S, Lefi E, Chaieb M (2019) Effect of phosphorus concentration on the photochemical stability of PSII and CO2 assimilation in Pistacia vera L. and Pistacia atlantica Desf. Plant Physiol Biochem 142:283–291

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Zhang LC (1994) Diurnal variation in photosynthesis efficiency of leaves in Satsuma Mandarin. Acta Phytophysiol Sin 20:263–271

    Google Scholar 

  • Cheng DD, Zhang ZS, Sun XB, Zhao M, Sun GY, Chow WS (2016) Photoinhibition and photoinhibition-like damage to the photosynthetic apparatus in tobacco leaves induced by pseudomonas syringae pv. Tabaci underlight and dark conditions. BMC Plant Biol. https://doi.org/10.1186/s12870-016-0723-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Nat Acad Sci USA 97:13430–13435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Z, Edwards GE, Ku MS (1992) Control of photosynthesis and stomatal conductance in Ricinus communis L. (castor bean) by leaf to air vapor pressure deficit. Plant Physiol 99(4):1426–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekov IT, Tsonev YI (2000) Effects of water stress and high temperature stress on the structure and activity of photosynthetic apparatus of Zea mays and Helianthus annuus. Photosynthetica 38:361–366

    Article  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020(1):1–24

    Article  CAS  Google Scholar 

  • Dilley R (2004) On why thylakoids energize ATP formation using either delocalized or localized proton gradients—a Ca2+ mediated role in thylakoid stress responses. Photosyn Res 80(1–3):245–263

    Article  CAS  Google Scholar 

  • Falqueto AR, Silva FS, Cassol D, Magalhães Júnior AM, Oliveira AC, Bacarin MA (2010) Chlorophyll fluorescence in rice: probing of senescence driven changes of PSII activity on rice varieties differing in grain yield capacity. Braz J Plant Physiol 22(1):35–41

    Article  Google Scholar 

  • Farias ME, Martinazzo EG, Bacarin MA (2016) Chlorophyll fluorescence in the evaluation of photosynthetic electron transport chain inhibitors in the pea. Rev Cienc Agron 47(1):178–186

    Article  Google Scholar 

  • Franks PJ, Farquhar GD (1999) A relationship between humidity response, growth form and photosynthetic operating point in C3 plants. Plant Cell Environ 22(11):1337–1349

    Article  Google Scholar 

  • Guo WD, Guo YP, Liu JR, Mattson N (2009) Midday depression of photosynthesis is related with carboxylation efficiency decrease and D1degradation in bayberry (Myrica rubra) plants. Sci Hortic 123:188–196

    Article  CAS  Google Scholar 

  • Hazrati S, Tahmasebi-Sarvestani Z, Modarres-Sanavy SAM, Mokhtassi-Bidgoli A, Nicola S (2016) Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiol Biochem 106:141–148

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa T, Hsiao TC (1999) Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crops Res 62(1):53–62

    Article  Google Scholar 

  • Hu MJ, Guo YP, Shen YG, Guo DP, Li DY (2009) Midday depression of photosynthesis and effects of mist spray in citrus. Ann Appl Biol 154(1):143–155

    Article  CAS  Google Scholar 

  • Hu S, Ding Y, Zhu C (2020) Sensitivity and responses of chloroplasts to heat stress in plants. Front Plant Sci 11:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishihara K, Saitoh K (1987) Diurnal courses of photosynthesis, transpiration, and diffusive conductance in the single-leaf of the rice plants grown in the paddy field under submerged condition. Jpn J Crop Sci 56(1):8–17

    Article  Google Scholar 

  • Ivanov AG, Hurry V, Sane PV, Öquist G, Huner NP (2008) Reaction centre quenching of excess light energy and photoprotection of photosystem II. J Plant Biol 51(2):85–96

    Article  CAS  Google Scholar 

  • Jifon JL, Syvertsen JP (2003) Moderate shade can increase net gas exchange and reduce photoinhibition in Citrus leaves. Tree Physiol 23:119–127

    Article  PubMed  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574

    Article  CAS  Google Scholar 

  • Krupenina NA, Bulychev AA (2007) Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 1767:781–788

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25(2):275–294

    Article  CAS  PubMed  Google Scholar 

  • Lima-Melo Y, Akebcar VT, Lobo AK, Suosa RH, Tikkanen M, Aro EM, Gollan PJ (2019) Photoinhibition of Photosystem I provides oxidative protection during imbalanced photosynthetic electron transport in Arabidopsis thaliana. Front Plant Sci 10:916

    Article  PubMed  PubMed Central  Google Scholar 

  • Maai E, Nishimura K, Takisawa R, Nakazaki T (2020) Light stress-induced chloroplast movement and midday depression of photosynthesis in sorghum leaves. Plant Prod Sci 23(2):172–181

    Article  CAS  Google Scholar 

  • Medina CL, Souza RP, Machado EC, Ribeiro RV, Silva JAB (2002) Photosynthetic response of Citrus grown under reflective aluminized polypropylene shading nets. Sci Hortic 96:115–125

    Article  Google Scholar 

  • Melis A (1999) Photosystem II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    Article  CAS  PubMed  Google Scholar 

  • Mlinarić S, Dunić JA, Babojelić MS, Cesar V, Lepeduš H (2017) Differential accumulation of photosynthetic proteins regulates diurnal photochemical adjustments of PSII in common fig (Ficus carica L.) leaves. J Plant Physiol 209:1–10

    Article  PubMed  CAS  Google Scholar 

  • Munia H, Guillaume A, Wada JH, Veldkamp Y, Virkki TV, Kummu M (2020) Future transboundary water stress and its drivers under climate change: a global study. Earth’s Future. https://doi.org/10.1029/2019EF001321

    Article  PubMed  PubMed Central  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767(6):414–421

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Chen YZ, Hubbart S, Peng S, Horton P (1999) Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice. Plant Physiol 119(2):553–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio M, Breia E, Rodrigues A, Osorio J, Le Roux X, Daudet FA, Ferreira I, Chaves MM (2006) Limitations to carbon assimilation by mild drought in nectarine trees growing under field conditions. Environ Exp Bot 55:235–247

    Article  CAS  Google Scholar 

  • Oukarroum A, El Madidi S, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60(3):438–446

    Article  CAS  Google Scholar 

  • Panda D, Sharma SG, Sarkar RK (2008) Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquat Bot 88(2):127–133

    Article  CAS  Google Scholar 

  • Pathre U, Sinha AK, Shirke PA, Sane PV (1998) Factors determining the midday depression of photosynthesis in trees under monsoon climate. Trees 12(8):472–481

    Article  Google Scholar 

  • Pettigrew WT, Hesketh JD, Peters DB, Woolley JT (1990) A vapor pressure deficit effect on crop canopy photosynthesis. Photosynth Res 24(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Pietrini F, Chaudhuri D, Thapliyal AP, Massacci A (2005) Analysis of chlorophyll fluorescence transients in mandarin leaves during a photo-oxidative cold shock and recovery. Agr Ecosyst Environ 106(2):189–198

    Article  CAS  Google Scholar 

  • Pons TL, Welschen RAM (2003) Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and Rubisco functioning. Tree Physiol 23:937–947

    Article  CAS  PubMed  Google Scholar 

  • Quick WP, Chaves MM, Wendler R, DavidM RML, Passaharinho JA, Stitt M (1992) The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell Environ 15(1):25–35

    Article  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004a) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004b) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar RK, Panda D (2009) Distinction and characterisation of submergence tolerant and sensitive rice cultivars, probed by the fluorescence OJIP rise kinetics. Funct Plant Biol 36(3):222–233

    Article  CAS  PubMed  Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735

    Article  CAS  Google Scholar 

  • Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2015) Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Plant 153:284–298

    Article  CAS  PubMed  Google Scholar 

  • Shirke PA, Pathre UV (2004) Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J Exp Bot 55:2111–2120

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61(1):32–42

    Article  CAS  Google Scholar 

  • Syvertsen JP, Salyani M (1991) Petroleum spray oil effects on net gas exchange of grapefruit leaves at various vapor pressures. HortScience 26(2):168–170

    Article  CAS  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16(1):53–60

    Article  CAS  PubMed  Google Scholar 

  • Tomek P, Ilık P, Lazár D, ˇStroch M, Nauˇs J (2003) On the determination of QB-non-reducing photosystem II centers from chlorophyll a fluorescence induction. Plant Sci 164:665–670

    Article  CAS  Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the Photosystem IIcomplex. Biochim Biophys Acta 1817:209–217

    Article  CAS  PubMed  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro E, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 89:1408–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi K, Hirasawa T, Ishihara K (1996) Analysis ofphotosynthesis depression under low leaf water potential bycomparison of CO2 exchange and O2 evolution rates. Jpn J Crop Sci 65:590–598

    Article  CAS  Google Scholar 

  • Wang QA, Lu CM, Zhang QD (2005) Midday photoinhibition of two newly developed super-rice hybrids. Photosynthetica 43(2):277–281

    Article  CAS  Google Scholar 

  • Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, Mei L (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open. https://doi.org/10.1242/bio.035279

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu DQ, Wu S (1996) Three phases of dark-recovery course from photo-inhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions. Photosynthetica 32:417–423

    Google Scholar 

  • Xu Q, Ma LT, Bai M, Wang Z, Niu J (2020) Effects of water stress on fluorescence parameters and photosynthetic characteristics of drip irrigation in rice. Water 12(1):289

    Article  CAS  Google Scholar 

  • Xu DQ, Shen YG (2005) External and internal factors responsible for midday depression of photosynthesis. In: Pessarakli M (ed) Handbook of photosynthesis. CRC Press, Boca Raton, pp 287–294

    Google Scholar 

  • Yokoyama G, Yasutake D, Tanizaki T, Kitano M (2019) Leaf wetting mitigates midday depression of photosynthesis in tomato plants. Photosynthetica 57(3):740–747

    Article  CAS  Google Scholar 

  • Zhou YH, Lam HM, Zhang JH (2007) Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J Exp Bot 58:1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Zia A, Walker BJ, Oung HMO, Charuvi D, Jahns P, Cousins AB, Kirchhoff H (2016) Protection of the photosynthetic apparatus against dehydration stress in the resurrection plant Craterostigma pumilum. Plant J 87(6):664–680

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like also to express their sincere thanks to Leila Mahfouthi for her careful editing of the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samouna Ben Hamed.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by M. J. Reigosa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Hamed, S., Lefi, E. & Chaieb, M. Diurnal kinetics related to physiological parameters in Pistacia vera L. versus Pistacia atlantica Desf. under water stress conditions. Acta Physiol Plant 43, 126 (2021). https://doi.org/10.1007/s11738-021-03297-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03297-z

Keyword

Navigation