Skip to main content

Advertisement

Log in

Microstructure and Properties of WB2/Cr Multilayer Films with Different Bilayer Numbers Deposited by Magnetron Sputtering

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The influence of the bilayer number on the microstructure, mechanical properties, adhesion strength and tribological behaviors of the WB2/Cr multilayer films was systematically investigated in the present study. Five groups of WB2/Cr films with the same modulation ratio were synthesized by magnetron sputtering technique. The crystalline structure of the films was determined by X-ray diffraction. The morphologies and the microstructure of the films were observed by scanning electron microscopy, atomic force microscopy and transmission electron microscopy. Furthermore, Nano indenter, scratch tester and ball-on-disc tribometer were used to evaluate the mechanical and tribological properties. As bilayer numbers varied from 5 to 40, the hardness increased first and then decreased with the maximum hardness of 33.9 GPa when the bilayer number is 30. The H/E* and H3/E*2 values calculated to evaluate the fracture toughness showed the similar changing trend with hardness. The adhesion strength reached the maximum of 67 N when the bilayer number is 30. The surface roughness and friction coefficient decreased with increasing bilayer number. The wear mechanism was also investigated, and the results suggested that the multilayer film with bilayer number of 30 exhibited the best wear resistance (1.78 × 10–7 mm3/Nm), benefiting from the contribution of high hardness, fracture toughness and adhesion strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Okamoto, M. Kusakari, K. Tanaka, H. Inui, S. Otani, Acta Mater. 58, 76 (2010)

    Article  CAS  Google Scholar 

  2. J.H. Weng, X. Zuo, L.L. Liu, Z.Y. Wang, P.L. Ke, X.C. Wei, A.Y. Wang, Mater. Lett. 240, 180 (2019)

    Article  CAS  Google Scholar 

  3. S.C. Zhang, Z.Y. Wang, P. Guo, P.L. Ke, M. Odén, A.Y. Wang, Surf. Coat. Technol. 322, 134 (2017)

    Article  CAS  Google Scholar 

  4. P.H. Mayrhofer, C. Mitterer, J.G. Wen, J.E. Greene, I. Petrov, Appl. Phys. Lett. 86, 3 (2005)

    Article  Google Scholar 

  5. F. Lofaj, T. Moskalewicz, G. Cempura, M. Mikula, J. Dusza, A. Czyrska-Filemonowicz, J. Eur. Ceram. Soc. 33, 2347 (2013)

    Article  CAS  Google Scholar 

  6. Q. Gu, G. Krauss, W. Steurer, Adv. Mater. 20, 3620 (2008)

    Article  CAS  Google Scholar 

  7. J.B. Levine, S.H. Tolbert, R.B. Kaner, Adv. Funct. Mater. 19, 3519 (2009)

    Article  CAS  Google Scholar 

  8. G. Akopov, M.T. Yeung, R.B. Kaner, Adv. Mater. 29, 29 (2017)

    Article  Google Scholar 

  9. C.L. Jiang, Z.L. Pei, Y.M. Liu, J.Q. Xiao, J. Gong, C. Sun, Phys. Status Solidi A-Appl. Mat. 210, 1221 (2013)

    Article  CAS  Google Scholar 

  10. C.L. Jiang, Z.L. Pei, Y.M. Liu, H. Lei, J. Gong, C. Sun, Appl. Surf. Sci. 288, 324 (2014)

    Article  CAS  Google Scholar 

  11. Y.M. Liu, C.L. Jiang, Z.L. Pei, H. Lei, J. Gong, C. Sun, Surf. Coat. Technol. 245, 108 (2014)

    Article  CAS  Google Scholar 

  12. Y.M. Liu, R.Q. Han, F. Liu, Z.L. Pei, C. Sun, J. Alloys Compd. 703, 188 (2017)

    Article  CAS  Google Scholar 

  13. Y.M. Liu, T. Li, F. Liu, Z.L. Pei, Acta Metall. Sin.-Engl. Lett. 32, 136 (2019)

    CAS  Google Scholar 

  14. Y.M. Liu, D.Y. Deng, H. Lei, Z.L. Pei, C.L. Jiang, C. Sun, J. Gong, J. Mater. Sci. Technol. 31, 1217 (2015)

    Article  Google Scholar 

  15. Y.M. Liu, Z.L. Pei, J. Gong, C. Sun, Surf. Coat. Technol. 291, 276 (2016)

    Article  CAS  Google Scholar 

  16. W. Dai, X. Li, Q. Wang, Surf. Coat. Technol. 382, 9 (2020)

    Article  Google Scholar 

  17. A.A. Voevodin, A.L. Erokhin, V.V. Lyubimov, Phys. Status Solidi A 145, 565 (1994)

    Article  CAS  Google Scholar 

  18. R. Ali, M. Sebastiani, E. Bemporad, Mater. Des. 75, 47 (2015)

    Article  CAS  Google Scholar 

  19. X. Guan, Y. Wang, Q. Xue, Appl. Surf. Sci. 502, 10 (2020)

    Article  Google Scholar 

  20. F. Wang, F. Zhang, L. Zheng, H. Zhang, Appl. Surf. Sci. 423, 695 (2017)

    Article  CAS  Google Scholar 

  21. W.B. Shi, Y.M. Liu, W.H. Li, J.H. Liu, H. Lei, J. Gong, C. Sun, Ceram. Int. 47, 19678 (2021)

    Article  CAS  Google Scholar 

  22. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  CAS  Google Scholar 

  23. D.M. Hausmann, R.G. Gordon, J. Cryst. Growth 249, 251 (2003)

    Article  CAS  Google Scholar 

  24. O. Çomakli, Ceram. Int. 46, 8185 (2020)

    Article  Google Scholar 

  25. Y.Y. Chang, C.J. Wu, Surf. Coat. Technol. 231, 62 (2013)

    Article  CAS  Google Scholar 

  26. A. Leyland, A. Matthews, Wear 246, 1 (2000)

    Article  CAS  Google Scholar 

  27. A. Matthews, S. Franklin, K. Holmberg, J. Phys. D-Appl. Phys. 40, 5463 (2007)

    Article  CAS  Google Scholar 

  28. S. Zhang, D. Sun, Y. Fu, H. Du, Surf. Coat. Technol. 198, 2 (2005)

    Article  CAS  Google Scholar 

  29. Q. Yang, L.R. Zhao, R. Mckellar, P.C. Patnaik, Vacuum 81, 101 (2006)

    Article  CAS  Google Scholar 

  30. S. Sveen, J.M. Andersson, R. M’Saoubi, M. Olsson, Wear 308, 133 (2013)

    Article  CAS  Google Scholar 

  31. X. Cai, Y. Gao, F. Cai, L. Zhang, S. Zhang, Appl. Surf. Sci. 483, 661 (2019)

    Article  CAS  Google Scholar 

  32. H. Holleck, V. Schier, Surf. Coat. Technol. 76–77, 328 (1995)

    Article  Google Scholar 

  33. S.J. Bull, Tribol. Int. 30, 491 (1997)

    Article  CAS  Google Scholar 

  34. S.C. Lee, W.Y. Ho, F.D. Lai, Mater. Chem. Phys. 43, 266 (1996)

    Article  CAS  Google Scholar 

  35. K. Holmberg, A. Laukkanen, H. Ronkainen, R. Waudby, G. Stachowiak, M. Wolski, P. Podsiadlo, M. Gee, J. Nunn, C. Gachot, L. Li, Wear 330–331, 3 (2015)

    Article  Google Scholar 

  36. L.C. Bai, G.G. Zhang, Z.B. Lu, Z.G. Wu, Y.F. Wang, L.P. Wang, P.X. Yan, J. Appl. Phys. 110, 8 (2011)

    Google Scholar 

  37. K. Holmberg, A. Matthews, H. Ronkainen, Tribol. Int. 31, 107 (1998)

    Article  CAS  Google Scholar 

  38. K. Holmberg, H. Ronkainen, A. Matthews, Ceram. Int. 26, 787 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51701157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sun.

Additional information

Availabe online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W.B., Liu, Y.M., Li, W.H. et al. Microstructure and Properties of WB2/Cr Multilayer Films with Different Bilayer Numbers Deposited by Magnetron Sputtering. Acta Metall. Sin. (Engl. Lett.) 35, 693–702 (2022). https://doi.org/10.1007/s40195-021-01285-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01285-3

Keywords

Navigation