Skip to main content
Log in

Influence of Flux Limitation on Large Time Behavior in a Three-Dimensional Chemotaxis-Stokes System Modeling Coral Fertilization

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we consider the following system

$$ \left \{ \textstyle\begin{array}{ll} n_{t}+u\cdot \nabla n&=\Delta n-\nabla \cdot (n\mathcal{S}(|\nabla c|^{2}) \nabla c)-nm, \\ c_{t}+u\cdot \nabla c&=\Delta c-c+m, \\ m_{t}+u\cdot \nabla m&=\Delta m-mn, \\ u_{t}&=\Delta u+\nabla P+(n+m)\nabla \Phi ,\qquad \nabla \cdot u=0 \end{array}\displaystyle \right . $$

which models the process of coral fertilization, in a smoothly three-dimensional bounded domain, where \(\mathcal{S}\) is a given function fulfilling

$$ |\mathcal{S}(\sigma )|\leq K_{\mathcal{S}}(1+\sigma )^{- \frac{\theta }{2}},\qquad \sigma \geq 0 $$

with some \(K_{\mathcal{S}}>0\). Based on conditional estimates of the quantity \(c\) and the gradients thereof, a relatively compressed argument as compared to that proceeding in related precedents shows that if

$$ \theta >0, $$

then for any initial data with proper regularity an associated initial-boundary problem under no-flux/no-flux/no-flux/Dirichlet boundary conditions admits a unique classical solution which is globally bounded, and which also enjoys the stabilization features in the sense that

$$\begin{aligned} &\|n(\cdot ,t)-n_{\infty }\|_{L^{\infty }(\Omega )}+\|c(\cdot ,t)-m_{ \infty }\|_{W^{1,\infty }(\Omega )} +\|m(\cdot ,t)-m_{\infty }\|_{W^{1, \infty }(\Omega )}\\ &\quad{}+\|u(\cdot ,t)\|_{L^{\infty }(\Omega )}\rightarrow 0 \quad \text{as}~t\rightarrow \infty \end{aligned}$$

with \(n_{\infty }:=\frac{1}{|\Omega |}\left \{ \int _{\Omega }n_{0}-\int _{ \Omega }m_{0}\right \} _{+}\) and \(m_{\infty }:=\frac{1}{|\Omega |}\left \{ \int _{\Omega }m_{0}-\int _{ \Omega }n_{0}\right \} _{+}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multiscale biological tissue models and flux-limited chemotaxis from binary mixtures of multicellular growing systems. Math. Models Methods Appl. Sci. 20, 1675–1693 (2010)

    MATH  Google Scholar 

  2. Bellomo, N., Winkler, M.: Finite-time blow-up in a degenerate chemotaxis system with flux limitation. Trans. Am. Math. Soc. Ser. B 4, 31–67 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bellomo, N., Winkler, M.: A degenerate chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up. Commun. Partial Differ. Equ. 42, 436–473 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bendahmane, M., Burger, R., Ruiz-Baier, R., Urbano, J.M., Wendland, W.: On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding. Math. Methods Appl. Sci. 32, 1704–1737 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bianchi, A., Painter, K.J., Sherratt, J.A.: A mathematical model for lymphangiogenesis in normal and diabetic wounds. J. Theor. Biol. 383, 61–86 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bianchi, A., Painter, K.J., Sherratt, J.A.: Spatio-temporal models of lymphangiogenesis in wound healing. Bull. Math. Biol. 78, 1904–1941 (2016)

    Article  MathSciNet  Google Scholar 

  7. Chae, M., Kang, K., Lee, J.: Global well-posedness and long time behaviors of chemotaxis-fluid system modeling coral fertilization. Discrete Contin. Dyn. Syst. 40, 2135–2163 (2020)

    Article  MathSciNet  Google Scholar 

  8. Chiyoda, Y., Mizukami, M., Yokota, T.: Finite-time blow-up in a quasilinear degenerate chemotaxis system with flux limitation. Acta Appl. Math. 167, 231–259 (2020)

    Article  MathSciNet  Google Scholar 

  9. Cieślak, T., Winkler, M.: Stabilization in a higher-dimensional quasilinear Keller–Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nonlinear Anal. 159, 129–144 (2017)

    Article  MathSciNet  Google Scholar 

  10. Coll, J.C., et al.: Chemical aspects of mass spawning in corals. I. Sperm-atractant molecules in the eggs of the scleractinian coral Montipora digitata. Mar. Biol. 118, 177–182 (1994)

    Article  Google Scholar 

  11. Coll, J.C., et al.: Chemical aspects of mass spawning in corals. II. (-)-Epi-thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria: Octocorallia). Mar. Biol. 123, 137–143 (1995)

    Article  Google Scholar 

  12. Espejo, E., Suzuki, T.: Reaction enhancement by chemotaxis. Nonlinear Anal., Real World Appl. 35, 102–131 (2017)

    Article  MathSciNet  Google Scholar 

  13. Espejo, E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal., Real World Appl. 21, 110–126 (2015)

    Article  MathSciNet  Google Scholar 

  14. Espejo, E., Winkler, M.: Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier–Stokes system modeling coral fertilization. Nonlinearity 31, 1227–1259 (2018)

    Article  MathSciNet  Google Scholar 

  15. Friedman, A.: Partial Differential Equations. Holt, Rinehart & Winston, New York (1969)

    MATH  Google Scholar 

  16. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)

    Book  Google Scholar 

  17. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  18. Htwe, M., Pang, P.Y.H., Wang, Y.: Asymptotic behavior of classical solutions of a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization. Z. Angew. Math. Phys. 67, 90 (2020)

    Article  MathSciNet  Google Scholar 

  19. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. Partial Differ. Equ. 37, 298–312 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case. J. Math. Phys. 53, 115609 (2012)

    Article  MathSciNet  Google Scholar 

  21. Li, F., Li, Y.: Global solvability and large-time behavior to a three-dimensional chemotaxis-Stokes system modeling coral fertilization. J. Math. Anal. Appl. 483, 123615 (2020)

    Article  MathSciNet  Google Scholar 

  22. Li, J., Pang, P.Y.H., Wang, Y.: Global boundedness and decay property of a three-dimensional Keller–Segel–Stokes system modeling coral fertilization. Nonlinearity 32, 2815–2847 (2019)

    Article  MathSciNet  Google Scholar 

  23. Li, Y.: Global boundedness of weak solution in an attraction-repulsion chemotaxis system with p-Laplacian diffusion. Nonlinear Anal., Real World Appl. 51, 102933 (2020)

    Article  MathSciNet  Google Scholar 

  24. Liu, L., Zheng, J., Bao, G.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization. Discrete Contin. Dyn. Syst., Ser. B 25, 3437–3460 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Liu, J.: Boundedness in a chemotaxis-(Navier–)Stokes system modeling coral fertilization with slow p-Laplacian diffusion. J. Math. Fluid Mech. 22, 10 (2020)

    Article  MathSciNet  Google Scholar 

  26. Liu, J.: Large time behavior in a three-dimensional degenerate chemotaxis-Stokes system modeling coral fertilization. J. Differ. Equ. 269, 1–55 (2020)

    Article  MathSciNet  Google Scholar 

  27. Li, X.: Global classical solutions in a Keller–Segel(–Navier)–Stokes system modeling coral fertilization. J. Differ. Equ. 267, 6290–6315 (2019)

    Article  MathSciNet  Google Scholar 

  28. Miller, R.L.: Sperm chemotaxis in hydromedusae. I. Species specificity and sperm behavior. Mar. Biol. 53, 99–114 (1979)

    Article  Google Scholar 

  29. Miller, R.L.: Demonstration of sperm chemotaxis in Echinodermata: Asteroidea, Holothuroidea, Ophiuroidea. J. Exp. Zool. 234, 383–414 (1985)

    Article  Google Scholar 

  30. Mizukami, M., Ono, T., Yokota, T.: Extensibility criterion ruling out gradient blow-up in a quasilinear degenerate chemotaxis system with flux limitation. J. Differ. Equ. 267, 5115–5164 (2019)

    Article  MathSciNet  Google Scholar 

  31. Porzio, M.M., Vespri, V.: Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103, 146–178 (2017)

    Article  Google Scholar 

  32. Tao, W., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier–Stokes system with slow p-Laplacian diffusion. Nonlinear Anal., Real World Appl. 45, 26–52 (2019)

    Article  MathSciNet  Google Scholar 

  33. Tao, W., Li, Y.: Boundedness of weak solutions of a chemotaxis-Stokes system with slow p-Laplacian diffusion. J. Differ. Equ. 268, 6872–6919 (2020)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: A critical blow-up exponent for flux limitation in a Keller–Segel system. Preprint

  35. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  36. Winkler, M.: Conditional estimates in three-dimensional chemotaxis-Stokes systems and application to a Keller–Segel-fluid model accounting for gradient-dependent flux limitation. J. Differ. Equ. 281, 33–57 (2021)

    Article  MathSciNet  Google Scholar 

  37. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  38. Winkler, M.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with gradient-dependent flux limitation. Nonlinear Anal., Real World Appl. 59, 103257 (2021)

    Article  MathSciNet  Google Scholar 

  39. Winkler, M.: Suppressing blow-up by gradient-dependent flux limitation in a planar Keller–Segel–Navier–Stokes system. Z. Angew. Math. Phys. 72, 72 (2021)

    Article  MathSciNet  Google Scholar 

  40. Zheng, J.: A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization. J. Differ. Equ. 272, 164–202 (2021)

    Article  MathSciNet  Google Scholar 

  41. Zhuang, M., Wang, W., Zheng, S.: Global weak solutions for a 3D chemotaxis-Stokes system with slow p-Laplacian diffusion and rotation. Nonlinear Anal., Real World Appl. 56, 103163 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to express his warm thanks to the referee for his/her helpful comments. This work is supported by the National Natural Science Foundation of China (Grant No. 11901298), the Fundamental Research Funds for the Central Universities (Grant No. KJQN202052), and the Basic Research Program of Jiangsu Province (Grant No. BK20190504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J. Influence of Flux Limitation on Large Time Behavior in a Three-Dimensional Chemotaxis-Stokes System Modeling Coral Fertilization. Acta Appl Math 174, 9 (2021). https://doi.org/10.1007/s10440-021-00427-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00427-0

Keywords

Mathematics Subject Classification (2010)

Navigation