Skip to main content
Log in

Identification and genome analysis of Comamonas testosteroni strain JLU460ET, a novel steroid-degrading bacterium

  • Genome Reports
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this work, C. testosteroni JLU460ET isolated from animal waste was confirmed to have great degradation capability for 17β-estradiol and testosterone. This bacterium could degrade nearly 90% of 17β-estradiol (5 mg L−1) in 4 days and transform it into estrone for further degradation. One hundred percent testosterone (144 mg L−1) could be completely degraded after 9 h of incubation. This is the first report of C. testosteroni strains with the ability to degrade both estrogens and testosterone. The whole genome sequence of C. testosteroni JLU460ET was obtained and annotated, containing one chromosome (5,497,097 bp) with 61.37% GC content. A total of 4805 protein-coding genes and 134 RNA genes (including 29 rRNA genes, 102 tRNA genes and three ncRNA genes) were identified. Furthermore, the complete genome sequence of C. testosteroni JLU460ET was compared with four other C. testosteroni strains. Altogether, these five C. testosteroni strains contain 3508 core genes and 7616 pan genes. A steroid degradation pathway including 11 steroid degradation genes exists in core genes of five C. testosteroni strains. Twenty-two steroid degradation genes were found in the C. testosteroni JLU460ET genome, which has the most reported steroid degradation genes among the five C. testosteroni genomes. Further functional genomic analysis identified a gene cluster responsible for testosterone degradation in C. testosteroni JLU460ET, as well as a gene encoding 17β-HSD, the key enzyme for transforming 17β-estradiol into estrone. This work could enrich the genome sources of steroid-degrading strains and promote the study of steroid-degradation mechanism in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Arai H, Ishii M (2019) Draft genome sequence of Comamonas testosteroni TA441, a bacterium that has a cryptic phenol degradation gene cluster. Microbiol Resour Announc 8:e00946-e1019

    PubMed  PubMed Central  Google Scholar 

  • Caldwell DJ, Mastrocco F, Anderson PD, Lange R, Sumpter JP (2012) Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol. Environ Toxicol Chem 31:1396–1406

    Article  CAS  Google Scholar 

  • Chen TS, Chen TC, Yeh KJC, Chao HR, Liaw ET, Hsieh CY, Chen KC, Hsieh LT, Yeh YL (2010) High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot. Sci Total Environ 408:3223–3230

    Article  CAS  Google Scholar 

  • Combalbert S, Hernandez-Raquet G (2010) Occurrence, fate, and biodegradation of estrogens in sewage and manure. Appl Microbiol Biotechnol 86:1671–1692

    Article  CAS  Google Scholar 

  • Fukuda K, Hosoyama A, Tsuchikane K, Ohji S, Yamazoe A, Fujita N, Shintani M, Kimbara K (2014) Complete genome sequence of polychlorinated biphenyl degrader Comamonas testosteroni TK102 (NBRC 109938). Genome Announc 2(5):e00865–14

  • Gong W, Kisiela M, Schilhabel M, Xiong G, Maser E (2012) Genome sequence of Comamonas testosteroni ATCC 11996, a representative strain involved in steroid degradation. J Bacteriol 194:1633–1634

    Article  CAS  Google Scholar 

  • Horinouchi M, Kurita T, Hayashi T, Kudo T (2010) Steroid degradation genes in Comamonas testosteroni TA441: isolation of genes encoding a delta 4(5)-isomerase and 3 alpha- and 3 beta-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot. J Steroid Biochem Mol Biol 122:253–263

    Article  CAS  Google Scholar 

  • Horinouchi M, Hayashia T, Kudo T (2012) Steroid degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 129:4–14

    Article  CAS  Google Scholar 

  • Ibero J, Galán B, Díaz E, García JL (2019) Testosterone degradative pathway of Novosphingobium tardaugens. Genes 10:871

    Article  CAS  Google Scholar 

  • Istrail S, Sutton GG, Florea L, Halpern AL, Mobarry CM, Lippert R, Walenz B, Shatkay H, Dew I, Miller JR, Flanigan MJ, Edwards NJ, Bolanos R, Fasulo D, Halldorsson BV, Hannenhalli S, Turner R, Yooseph S, Lu F, Nusskern DR, Shue BC, Zheng XH, Zhong F, Delcher AL, Huson DH, Kravitz SA, Mouchard L, Reinert K, Remington KA, Clark AG, Waterman MS, Eichler EE, Adams MD, Hunkapiller MW, Myers EW, Venter JC (2004) Whole-genome shotgun assembly and comparison of human genome assemblies. Proc Natl Acad Sci USA 101:1916–1921

    Article  CAS  Google Scholar 

  • Khanal SK, Xie B, Thompson ML, Sung S, Ong SK, Leeuwe J (2006) Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ Sci Technol 40:6537–6546

    Article  CAS  Google Scholar 

  • Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA 104:8897–8901

    Article  CAS  Google Scholar 

  • Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J (2009) SNP detection for massively parallel whole-genome resequencing. Genome Res 19:1124–1132

    Article  CAS  Google Scholar 

  • Li Z, Nandakumar R, Madayiputhiya N, Li X (2012) Proteomic analysis of 17β-estradiol degradation by Stenotrophomonas maltophilia. Environ Sci Technol 46:5947–5955

    Article  CAS  Google Scholar 

  • Liu L, Zhu W, Cao Z, Xu B, Wang G, Luo M (2015a) High correlation between genotypes and phenotypes of environmental bacteria Comamonas testosteroni strains. BMC Genomics 16:110

    Article  Google Scholar 

  • Liu N, Shi Y, Li M, Zhang Td, Gao S (2015b) Simultaneous determination of four trace estrogens in feces, leachate, tap and groundwater using solid-liquid extraction/auto solid-phase extraction and high-performance liquid chromatography with fluorescence detection. J Sep Sci 38:3494–3501

    Article  CAS  Google Scholar 

  • Liu N, Shi Y, Li J, Zhu M, Zhang T (2020) Isolation and characterization of a new highly effective 17β-estradiol-degrading Gordonia sp. strain R9. 3 Biotech 10:174

    Article  Google Scholar 

  • Ma YF, Zhang Y, Zhang JY, Chen DW, Zhu Y, Zheng H, Wang SY, Jiang CY, Zhao GP, Liu SJ (2009) The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. Appl Environ Microbiol 75:6812–6819

    Article  CAS  Google Scholar 

  • Oppermann UCT, Belai I, Maser E (1996) Antibiotic resistance and enhanced insecticide catabolism as consequences of steroid induction in the Gram-negative bacterium Comamonas testosteroni. J Steroid Biochem Mol Biol 58:217–223

    Article  CAS  Google Scholar 

  • Wang P, Zheng D, Wang Y, Liang R (2018) One 3-oxoacyl-(acyl-Carrier-protein) reductase functions as 17β-hydroxysteroid dehydrogenase in the estrogen-degrading Pseudomonas putida SJTE-1. Biochem Biophys Res Commun 505:910–916

    Article  CAS  Google Scholar 

  • Wang YQ, Li YW, Chen QL, Liu ZH (2019) Long-term exposure of xenoestrogens with environmental relevant concentrations disrupted spermatogenesis of zebra fish through altering sex hormone balance, stimulating germ cell proliferation, meiosis and enhancing apoptosis. Environ Pollut 244:486–494

    Article  Google Scholar 

  • Weiss M, Kesberg AI, Labutti KM, Pitluck S, Bruce D, Hauser L, Copeland A, Woyke T, Lowry S, Lucas S, Land M, Goodwin L, Kjelleberg S, Cook AM, Buhmann M, Thomas T, Schleheck D (2013) Permanent draft genome sequence of Comamonas testosteroni KF-1. Stand Genomic Sci 8:239–254

    Article  Google Scholar 

  • Whitman WB (2017) Bacteria and the fate of estrogen in the environment. Cell Chem Biol 24:652–653

    Article  CAS  Google Scholar 

  • Wu Q, Lam JCW, Kwok KY, Tsui MMP, Lam PKS (2017) Occurrence and fate of endogenous steroid hormones, alkylphenol ethoxylates, bisphenol A and phthalates in municipal sewage treatment systems. J Environ Sci 61:49–58

    Article  CAS  Google Scholar 

  • Ye X, Wang H, Kan J, Li J, Huang T, Xiong G (2017) A novel 17β-hydroxysteroid dehydrogenase in Rhodococcus sp. P14 for transforming 17 β-estradiol to estrone. Chem Biol Interact 276:105–112

    Article  CAS  Google Scholar 

  • Yu CP, Deeb RA, Chu KH (2013) Microbial degradation of steroidal estrogens. Chemosphere 91:1225–1235

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Science Foundation of China (Grant no. 32072924 and 31702299).

Author information

Authors and Affiliations

Authors

Contributions

TZ designed the experiments and wrote the manuscript. NL performed the experiments. YS, JL and MZ assisted the experiments. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Tingdi Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval and consent to participate

This article does not contain data from any study with human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Shi, Ye., Li, J. et al. Identification and genome analysis of Comamonas testosteroni strain JLU460ET, a novel steroid-degrading bacterium. 3 Biotech 11, 404 (2021). https://doi.org/10.1007/s13205-021-02949-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02949-8

Keywords

Navigation