Skip to main content
Log in

Inverse Emulsion Copolymerization of Acrylamide and 2-Acrylamido-2-methylpropane Sulfonic Acid Sodium Salt for Preparing Water-Soluble Drag Reduction Additives

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A copolymer of acrylamide (AA) and 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPSNa) was prepared by inverse emulsion radical polymerization in the presence of azobisisobutyronitrile initiator. The effect of temperature, initiator, and sum of the monomers on the rate of inverse emulsion copolymerization of acrylamide and AMPSNa was studied by dilatometry. The kinetic parameters of the process were determined, including the effective copolymerization constants, reaction activation energy, reaction rate, and orders with respect to the initiator and monomers. The synthesized AA–AMPSNa copolymer was characterized by IR spectroscopy and elemental analysis. The intrinsic viscosity of the copolymers was determined, and the viscosity-average molecular weight was calculated by the Mark–Kuhn–Houwink equation. The drag reduction was studied by capillary turbulent viscometry. The AA–AMPSNa copolymers can be efficiently used as drag reduction additives to water flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Toms, B., in Proc. Int. Congr. on Rheology, 1948, pp. 135–141.

  2. Edomwonyi-Out, L.C., Chinaud, M., and Angeli, P., Exp. Therm. Fluid Sci., 2015, vol. 64, pp. 164–174. https://doi.org/10.1016/j.expthermflusci.2015.02.018

    Article  CAS  Google Scholar 

  3. Abubakar, A., Al-Wahaibi, T., Al-Wahaibi, Y., Al-Hashmi, A.R., and Al-Ajmi, A., Chem. Eng. Res. Des., 2014, vol. 92, no. 11, pp. 2153–2181. https://doi.org/10.1016/j.cherd.2014.02.031

    Article  CAS  Google Scholar 

  4. Jouenne, S., Anfray, J., Cordelier, P.R., Mateen, K., Levitt, D., Souilem, I., Marchal, P., Lemaitre, C., Choplin, L., Nesvik, J., and Waldman, T., Oil Gas Facil., 2015, vol. 4, no. 01, pp. 80–92. https://doi.org/10.2118/169699-PA

    Article  Google Scholar 

  5. Jouenne, S., J. Petrol. Sci. Eng., 2020, vol. 195, ID 107545. https://doi.org/10.1016/j.petrol.2020.107545

    Article  CAS  Google Scholar 

  6. Pei, Y., Zhao, L., Du, G., Li, N., Xu, K., and Yang, H., Petroleum, 2016, vol. 2, no. 4, pp. 399–407. https://doi.org/10.1016/j.petlm.2016.08.006

    Article  Google Scholar 

  7. Le Brun, N., Zadrazil, I., Norman, L., Bismarck, A., and Markides, C.N., Chem. Eng. Sci., 2016, vol. 146, pp. 135–143. https://doi.org/10.1016/j.ces.2016.02.009

    Article  CAS  Google Scholar 

  8. Vanderhoff, J.W., Bradford, E.B., Tarkowski, H.L., Shaffer, J.B., and Willey, R.M., Adv. Chem., 1962, pp. 32–51. https://doi.org/10.1021/ba-1962-0034.ch002

    Article  Google Scholar 

  9. Anderson, C.D. and Daniels, E.S., Emulsion Polymerisation and Latex Applications, RAPRA Review Reports, Shawbury: iSmithers Rapra, 2003.

    Google Scholar 

  10. Chern, C.S., Prog. Polym. Sci., 2006, vol. 31, no. 5, pp. 443–486. https://doi.org/10.1016/j.progpolymsci.2006.02.001

    Article  CAS  Google Scholar 

  11. Pabon, M., Selb, J., Candau, F., and Gilbert, R.G., Polymer, 1999, vol. 40, no. 11, pp. 3101–3106. https://doi.org/10.1016/S0032-3861(98)00516-3

    Article  CAS  Google Scholar 

  12. Yang, J. and Weng, B., Synth. Met., 2009, vol. 159, no. 21, pp. 2249–2252. https://doi.org/10.1016/j.synthmet.2009.07.045

    Article  CAS  Google Scholar 

  13. Barari, M., Abdollahi, M., and Hemmati, M., Iran. Polym. J., 2011, vol. 20, no. 1, pp. 65–76.

    CAS  Google Scholar 

  14. Jamshidi, H. and Rabiee, A., Adv. Mater. Sci. Eng., 2014, vol. 2014, ID 728675. https://doi.org/10.1155/2014/728675

    Article  Google Scholar 

  15. Wu, Y.M., Wang, Y.P., Yu, Y.Q., Xu, J., and Chen, Q.F., J. Appl. Polym. Sci., 2006, vol. 102, no. 3, pp. 2379–2385. https://doi.org/10.1002/app.24494

    Article  CAS  Google Scholar 

  16. García-Uriostegui, L., Pineda-Torres, G., López-Ramírez, S., Barragán-Aroche, J., and Durán-Valencia, C., Polym. Eng. Sci., 2017, vol. 57, no. 11, pp. 1214–1223. https://doi.org/10.1002/pen.24499

    Article  CAS  Google Scholar 

  17. Tamsilian, Y., Ramazani, S.A.A., Shaban, M., Ayatollahi, S., and Tomovska, R., Colloid Polym. Sci., 2016, vol. 294, no. 3, pp. 513–525. https://doi.org/10.1007/s00396-015-3803-5

    Article  CAS  Google Scholar 

  18. Capek, I., Fialová, L., and Berek, D., Des. Monom. Polym., 2008, vol. 11, no. 2, pp. 123–137. https://doi.org/10.1163/156855508X298035

    Article  CAS  Google Scholar 

  19. Capek, I., Adv. Colloid Interface Sci., 2010, vol. 156, nos. 1–2, pp. 35–61. https://doi.org/10.1016/j.cis.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  20. Ouyang, L., Wang, L., and Schork, F.J., Polymer, 2011, vol. 52, no. 1, pp. 63–67. https://doi.org/10.1016/j.polymer.2010.10.063

    Article  CAS  Google Scholar 

  21. Hunkeler, D., Hamielec, A.E., and Baade, W., Polymer, 1989, vol. 30, no. 1, pp. 127–142. https://doi.org/10.1016/0032-3861(89)90393-5

    Article  CAS  Google Scholar 

  22. Nechaev, A.I., Gorbunova, M.N., Lebedeva, I.I., Val’tsifer, V.A., and Strel’nikov, V.N., Russ. J. Appl. Chem., 2017, vol. 90, no. 9, pp. 1524–1531. https://doi.org/10.1134/S1070427217090233 

    Article  CAS  Google Scholar 

  23. Fu, Z., Liu, M., Xu, J., Wang, Q., and Fan, Z., Fuel, 2010, vol. 89, no. 10, pp. 2838–2843. https://doi.org/10.1016/j.fuel.2010.05.031

    Article  CAS  Google Scholar 

  24. Zhang, D., Song, X., Liang, F., Li, Z., and Liu, F., J. Phys. Chem. B, 2006, vol. 110, no. 18, pp. 9079–9084. https://doi.org/10.1021/jp057156b

    Article  CAS  PubMed  Google Scholar 

  25. Nechaev, A.I., Voronina, N.S., Valtsifer, V.A., and Strelnikov, V.N., Colloid Polym. Sci., 2021. https://doi.org/10.1007/s00396-021-04832-7

    Article  Google Scholar 

  26. Kurenkov, V.F., Safin, A.G., Yanushkevich, E.A., and Chernyaeva, E.E., Russ. J. Appl. Chem, 1999, vol. 72, no. 2, pp. 282–286.

    Google Scholar 

  27. Nechaev, A.I., Lebedeva, I.I., Vasil’eva, O.G., Chashchukhin, A.S., and Val’tsifer, V.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 9, pp. 1494–1499. https://doi.org/10.1134/S1070427216090172 

    Article  CAS  Google Scholar 

  28. Kolek, E., Simko, P., Simon, P., and Gatial, A., J. Food Nutr. Res., 2007, vol. 46, pp. 39–44.

    CAS  Google Scholar 

  29. Rosa, F., Bordado, J., and Casquilho, M., J. Appl. Polym. Sci., 2003, vol. 87, no. 2, pp. 192–198. https://doi.org/10.1002/app.11325

    Article  CAS  Google Scholar 

  30. Dixon, K.W., Decomposition Rates of Organic Free Radical Initiators, Polymer Handbook, New York: Wiley, 1999.

    Google Scholar 

  31. Kobyakova, K.O., Gromov, V.F., and Teleshov, E.N., Vysokomol. Soedin., Ser. A, 1993, vol. 35, no. 2, pp. 125–130.

    CAS  Google Scholar 

  32. Gromov, V.F., Osmanov, T.O., and Glazkova, I.V., Vysokomol. Soedin., Ser. A, 1988, vol. 30, no. 6, pp. 1164–1168.

    CAS  Google Scholar 

  33. De Gennes, P.G., Introduction to Polymer Dynamics, Cambridge, UK: Cambridge Univ. Press, 1990.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Center for Shared Use for Studies of Materials and Substances, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences.

Funding

The study was financially supported by the Russian Foundation for Basic Research within the framework of research project no. 19-33-90193.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. S. Voronina or A. I. Nechaev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 6, pp. 736–746, January, 2021 https://doi.org/10.31857/S0044461821060086

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronina, N.S., Nechaev, A.I., Strel’nikov, V.N. et al. Inverse Emulsion Copolymerization of Acrylamide and 2-Acrylamido-2-methylpropane Sulfonic Acid Sodium Salt for Preparing Water-Soluble Drag Reduction Additives. Russ J Appl Chem 94, 748–757 (2021). https://doi.org/10.1134/S1070427221060082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221060082

Keywords:

Navigation