Skip to main content
Log in

Synthesis and Study of the Electrochemical Properties of Manganese Hexacyanoferrate as a Cathode Material for Na-Ion Batteries

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Manganese hexacyanoferrate was synthesized by the hydrothermal method and its cubic structure was established. Manganese hexacyanoferrate powder was studied in the composition of a cathode material for sodium-ion batteries with an electronically conductive carbon black additive and a polyvinylidene fluoride binder polymer. The electrochemical properties of manganese hexacyanoferrate-based electrodes in a propylene carbonate solution of sodium perchlorate were investigated by the cyclic voltammetry and charge-discharge curves. The specific capacities of the cathode material and their dependence on the current density were found. The stability of the capacitive characteristics of the material was studied during long-term charge-discharge cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tarascon, J.-M. and Armand, M., Nature, 2001, vol. 414, pp. 359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Deng, J., Luo, W.B., Chou, S.L., Liu, H.K., Dou, and S.X., Adv. Energy Mater., 2018, vol. 8, ID 1701428. https://doi.org/10.1002/aenm.201701428

    Article  CAS  Google Scholar 

  3. Eftekhari, A. and Kim, D.-W. , J. Power Sources, 2018, vol. 395, pp. 336–348. https://doi.org/10.1016/j.jpowsour.2018.05.089

    Article  CAS  Google Scholar 

  4. Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S., Chem. Rev., 2014, vol. 114, pp. 11636–11682. https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  5. Lu, Y., Wang, L., Cheng, J., and Goodenough, J.B., Chem. Commun., 2012, vol. 48, pp. 6544–6546. https://doi.org/10.1039/C2CC31777J

    Article  CAS  Google Scholar 

  6. Fernández-Ropero, A.J., Piernas-Muñoz, M.J., Castillo-Martínez, E., Rojo, T., and Casas-Cabanas, M., Electrochim. Acta, 2016, vol. 210, pp. 352–357. https://doi.org/10.1016/j.electacta.2016.05.176

    Article  CAS  Google Scholar 

  7. Chen, J., Wei, L., Mahmood, A., Pei, Z., Zhou, Z., Chen, X., and Chen, Y., Energy Storage Mater., 2020, vol. 25, pp. 585–612. https://doi.org/10.1016/j.ensm.2019.09.024

    Article  Google Scholar 

  8. Song, J., Wang, L., Lu, Y., Liu, J., Guo, B., Xiao, P., Lee, J.J., Yang, X.-Q., Henkelman, G., and Goodenough, J.B., J. Am. Chem. Soc., 2015, vol. 137, pp. 2658–2664. https://doi.org/10.1021/ja512383b

    Article  CAS  PubMed  Google Scholar 

  9. Tananaev, I.V., Seifer, G.B., Kharitonov, Yu.Ya., Kuznetsov, V.G., and Korol’kov, A.P., Khimiya ferrotsianidov (Ferrocyanide Chemistry), Moscow: Nauka, 1971.

    Google Scholar 

  10. Bie, X., Kubota, K., Hosaka, T., Chihara, K., and Komaba, S., J. Mater. Chem. A, 2017, vol. 5, pp. 4325–4330. https://doi.org/10.1039/C7TA00220C

    Article  CAS  Google Scholar 

  11. Shen, Z., Guo, S., Liu, C., Sun, Y., Chen, Z., Tu, J., Liu, S., Cheng, J., Xie, J., Cao, G., and Zhao, X., ACS Sustainable Chem. Eng., 2018, vol. 6, pp. 16121–16129. https://doi.org/10.1021/acssuschemeng.8b02758

    Article  CAS  Google Scholar 

  12. Zhang, X., He, P., Zhang, X., Li, C., Liu, H., Wang, S., and Dong, F., Electrochim. Acta, 2018, vol. 276, pp. 92–101. https://doi.org/10.1016/j.electacta.2018.04.129

    Article  CAS  Google Scholar 

  13. Moritomo, Y., Urase, S., and Shibata, T., Electrochim. Acta, 2016, vol. 210, pp. 963–969. https://doi.org/10.1016/j.electacta.2016.05.205

    Article  CAS  Google Scholar 

  14. Sottmann, J., Bernal, F.L. M., Yusenko, K.V., Herrmann, M., Emerich, H., Wragg, D.S., and Margadonna, S., Electrochim. Acta, 2016, vol. 200, pp. 305–313. https://doi.org/10.1016/j.electacta.2016.03.131

    Article  CAS  Google Scholar 

  15. Moritomo, Y., Wakaume, K., Takachi, M., Zhu, X.H., and Kamioka, H., J. Phys. Soc. Jpn., 2013, vol. 82, ID 094710. https://doi.org/10.7566/JPSJ.82.094710

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Scanning electron microscopy studies were carried out using equipment from the RC “Nanotechnology” of the Research Park of St. Petersburg State University. Powder X-ray diffraction studies were performed with the equipment of the RC “X-ray diffraction research methods” of the Research Park of St. Petersburg State University. Thermographic studies were performed at the RC “Thermogravimetric and Calorimetric Research Methods” of the Research Park of St. Petersburg State University.

Funding

This work was carried out with financial support from St. Petersburg State University (grant no. 26455158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kondrat’ev.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 6, pp. 811–816, January, 2021 https://doi.org/10.31857/S0044461821060153

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamenskii, M.A., Shkreba, E.V., Tolstopyatova, E.G. et al. Synthesis and Study of the Electrochemical Properties of Manganese Hexacyanoferrate as a Cathode Material for Na-Ion Batteries. Russ J Appl Chem 94, 818–823 (2021). https://doi.org/10.1134/S107042722106015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722106015X

Keywords:

Navigation