Skip to main content
Log in

Photocatalytic Activity of Titanium Dioxide Immobilized in Polyacrylamide Hydrogels with Different Degrees of Crosslinking

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Composite filamentary hydrogels based on cross-linked polyacrylamide, filled with TiO2 particles, were synthesized. The degree of crosslinking of the hydrogel matrix was set by the molar ratio of the cross-linking agent and monomer: 1 : 50, 1 : 100, 1 : 200, or 1 : 300. The diffusion of Methyl Orange dye in the polymer matrix as a function of the degree of crosslinking was studied by spectrophotometry, and the diffusion coefficient was calculated: 1.4 × 10–6, 1.8 × 10–6, 3.4 × 10–6, and 4.8 × 10–6 cm2 s–1, respectively. The photocatalytic activity of the composite hydrogels toward UV-induced degradation of a model dye, Methyl Orange, was studied. The effective rate constants of the photocatalytic degradation of the dye under the action of polyacrylamide/TiO2 composite hydrogels and aqueous TiO2 suspensions were determined. The presence of the hydrogel polymer matrix reduces the photocatalytic activity of TiO2 particles compared to the aqueous suspension containing the same amount of the particles. The photocatalytic activity of both aqueous TiO2 suspension and polyacrylamide/TiO2 composite hydrogel linearly depends on the total amount of TiO2 particles in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D.W., Chem. Rev., 2014, vol. 114, no. 19, pp. 9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  PubMed  Google Scholar 

  2. Lučić, M., Milosavljević, N., Radetić, M.Z., Šaponjić, Z., Radoičić, M., and Krušić, M.K., Sep. Purif. Technol., 2014, vol. 122, pp. 206–216. https://doi.org/10.1016/j.seppur.2013.11.002

    Article  CAS  Google Scholar 

  3. Lei, P., Wang, F., Gao, X., Ding, Y., Zhang, S., Zhao, J., Liu, S., and Yang, M., J. Hazard. Mater., 2012, vols. 227–228, pp. 185–194. https://doi.org/10.1016/j.jhazmat.2012.05.029

    Article  CAS  PubMed  Google Scholar 

  4. Colmenares, J.C. and Kuna, E., Molecules, 2017, vol. 22, no. 5, pp. 790–806. https://doi.org/10.3390/molecules22050790

    Article  PubMed Central  Google Scholar 

  5. Katzenberg, A., Raman, A., Schnabel, N.L., Quispe, A.L., Silverman, A.I., and Modestino, M.A., React. Chem. Eng., 2020, vol. 5, no. 2, pp. 377–386. https://doi.org/10.1039/c9re00456d

    Article  CAS  Google Scholar 

  6. Kangwansupamonkon, W., Jitbunpot, W., and Kiatkamjornwong, S., Polym. Degrad. Stab., 2010, vol. 95, no. 9, pp. 1894–1902. https://doi.org/10.1016/j.polymdegradstab.2010.04.019

    Article  CAS  Google Scholar 

  7. Tang, Q., Lin, J., Wu, Z., Wu, J., Huang, M., and Yang, Y., Eur. Polym. J., 2007, vol. 43, no. 6, pp. 2214–2220. https://doi.org/10.1016/j.eurpolymj.2007.01.054

    Article  CAS  Google Scholar 

  8. Kazemi, F., Mohamadnia, Z., Kaboudin, B., and Karimi, Z., J. Appl. Polym. Sci., 2016, vol. 133, no. 19, pp. 43386–43395. https://doi.org/10.1002/app.43386

    Article  CAS  Google Scholar 

  9. Wei, S., Zhang, X., Zhao, K., Fu, Y., Li, Z., Lin, B., and Wei, J., Polym. Polym. Compos., 2016, vol. 16, no. 2, pp. 101–113. https://doi.org/10.1002/pc.23295

    Article  CAS  Google Scholar 

  10. Morsi, R.E. and Elsalamony, R.A., New J. Chem., 2016, vol. 40, no. 3, pp. 2927–2934. https://doi.org/10.1039/C5NJ02823J

    Article  CAS  Google Scholar 

  11. Mansurov, R.R., Safronov, A.P., Lakiza, N.V., and Beketov, I.V., Russ. J. Appl. Chem., 2017, vol. 90, no. 10, pp. 1712–1721. https://doi.org/10.1134/S1070427217100238 

    Article  CAS  Google Scholar 

  12. Amsden, B., Macromolecules, 1998, vol. 31, no. 23, pp. 8382–8395. https://doi.org/10.1021/ma980765f

    Article  CAS  Google Scholar 

  13. López, R. and Gómez, R., J. Sol–Gel Sci. Technol., 2012, vol. 61, no. 1, pp. 1–7. https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  14. Quesada-Pérez, M., Maroto-Centeno, J.A., Forcada, J., and Hidalgo-Alvarez, R., Soft Matter, 2011, vol. 7, no. 22, pp. 10536–10547. https://doi.org/10.1039/C1SM06031G

    Article  Google Scholar 

  15. Haggerty, L., Sugarman, J.H., and Prud’homme, R.K., Polymer (Guildf.), 1988, vol. 29, no. 6, pp. 1058–1063. https://doi.org/10.1039/C1SM06031G

    Article  CAS  Google Scholar 

  16. Al-Qaradawi, S. and Salman, S.R., J. Photochem. Photobiol. A: Chemistry, 2002, vol. 148, nos. 1–3, pp. 161–168. https://doi.org/10.1016/S1010-6030(02)00086-2

    Article  CAS  Google Scholar 

  17. Ong, S.A., Min, O.M., Ho, L.N., and Wong, Y.S., Water Air Soil Pollut., 2012, vol. 223, no. 8, pp. 5483–5493. https://doi.org/10.1007/s11270-012-1295-1

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Cand. Sci. (Chem.) M.S. Valova for measuring the band gap of the TiO2 sample using the equipment of the Center for Shared Use Synthesis and Analysis of Organic Compounds, Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences.

Funding

The study was financially supported by the Russian Foundation for Basic Research within the framework of research project no. 19-33-60015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Mansurov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 6, pp. 690–698, January, 2021 https://doi.org/10.31857/S0044461821060025

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansurov, R.R., Safronov, A.P., Chernyuk, S.D. et al. Photocatalytic Activity of Titanium Dioxide Immobilized in Polyacrylamide Hydrogels with Different Degrees of Crosslinking. Russ J Appl Chem 94, 706–714 (2021). https://doi.org/10.1134/S1070427221060021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221060021

Keywords:

Navigation