Skip to main content
Log in

Hybrid Filling of Polyethylene Terephthalate with Multi-Walled Carbon Nanotubes and Short Glass Fibers

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The effect of hybrid filling of polyethylene terephthalate with short glass fibers in amount from 15 to 60 wt % and multi-walled carbon nanotubes in amount of 0.5 and 1.6 wt % on the structure, static and dynamic mechanical properties of composites produced by blending in a melt by the method of reactive extrusion was studied. It was shown that nanotubes initiate heterophase crystallization of the polymer matrix, which improves the transfer of stresses to the nanofiller and makes the main contribution to the reinforcing of both nano- and hybrid-filled composites. The elastic moduli of cast specimens increase upon stretching by 41–54% for nanocomposites and by 20–30% for hybrid-filled composites, and upon bending, by 5–18 and 16–21% compared to the initial and glass-filled polymer, respectively. It was demonstrated that the magnitude of the reinforcing effect is related to the orientation of the nano- and micro-filler and depends on the specimen production technology and on the test method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Pesetskii, S.C., Polim. Mat. Tekhol., 2015, vol. 1, no. 2, p. 5.

    Google Scholar 

  2. Pesetskii, S.S., Bogdanovich, S.P., and Sodyleva, T.M., Dokl. Nats. Akad. Nauk Belarusi, 2017, vol. 61, no. 2, pp. 74–83.

    Google Scholar 

  3. Pesetskii, S.S., Bogdanovich, S.P., Dubrovskii, V.V., Sodyleva, T.M., Aderikha, V.N., and Usova, V.N., Polim. Mat. Tekhol., 2016, vol. 2, no. 3, pp. 45–57.

    Google Scholar 

  4. Clifford, M.J. and Wan, T.M., Polymer, 2010, vol. 51, pp. 535–539. https://doi.org/10.1016/j.polymer.2009.11.046

    Article  CAS  Google Scholar 

  5. Meszaros, L. and Deak, T., Compos. Sci. Technol., 2013, vol. 75, pp. 22–27. https://doi.org/10.1016/j.compscitech.2012.11.013

    Article  CAS  Google Scholar 

  6. Pedrazzoli, D. and Pegoretti, A., Compos. Sci. Technol., 2013, vol. 76, pp. 77–83. https://doi.org/10.1016/j.compscitech.2012.12.016

    Article  CAS  Google Scholar 

  7. Arao, Y., Yumitori, S., Suzuki, H., Tanaka, T., and Katayama, T., Composites, Part A, 2013, vol. 55, pp. 19–26. https://doi.org/10.1016/j.compositesa.2013.08.002

    Article  CAS  Google Scholar 

  8. Asadi, A., Miller, M., Moon, R., and Kalaitzidou, K., eXPRESS Polym. Lett., 2016, vol. 10 (7), pp. 587–597. https://doi.org/10.3144/expresspolymlett.2016.54

    Article  CAS  Google Scholar 

  9. Munoz-Vulez, M.F., Valadez-Gonzalez, A., and Herrera-Franco, P.J., eXPRESS Polym. Lett., 2017, vol. 11 (9), pp. 704–718. https://doi.org/10.3144/expresspolymlett.2017.68

    Article  CAS  Google Scholar 

  10. Pegoretti, A., Mahmood, H., Pedrazzoli, D., and Kalaitzidou, K., IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 139(1), ID 012004. https://doi.org/10.1088/1757-899X/139/1/012004

    Article  CAS  Google Scholar 

  11. Dubrovskii, V.V., Aderikha, V.N., Shapovalov, V.A., and Pesetskii, S.S., Dokl. Nats. Akad. Nauk Belarusi, 2018, vol. 62, no. 1, pp. 120–128.

    Article  Google Scholar 

  12. Dubrovsky, V.V., Shapovalov, V.A., Aderikha, V.N., and Pesetskii, S.S., Mater. Today Commun., 2018, vol. 17, pp. 15–23. https://doi.org/10.1016/j.mtcomm.2018.08.002

    Article  CAS  Google Scholar 

  13. Pesetskii, S.S., Shevchenko, V.V., and Dubrovsky, V.V., J. Appl. Polym. Sci., 2018, vol. 135, ID 45711. https://doi.org/10.1002/app.45711

    Article  CAS  Google Scholar 

  14. Wunderlich, B., Polym. Eng. Sci., 1978, vol. 18(6), pp. 431–436. https://doi.org/10.1002/pen.760180603

    Article  CAS  Google Scholar 

  15. Fakirov, S., eXPRESS Polym. Lett., 2020, vol. 14(5), pp. 436–466. https://doi.org/10.3144/expresspolymlett.2020.36

    Article  CAS  Google Scholar 

  16. Ma, P.C., Siddiqui, N.A., Marom, G., and Kim, J.K., Composites, Part A, 2010, vol. 41, pp. 1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  17. May-Pat, A., Avilés, F., Toro, P., Yazdani-Pedram, M., and Cauich-Rodríguez, J.V., eXPRESS Polym. Lett., 2012, vol. 6 (2), pp. 96–106. https://doi.org/10.3144/expresspolymlett.2012.11

    Article  CAS  Google Scholar 

  18. Mills, N.J., Plastics. Microstructure and Engineering Application, Elsevier, 2005, pp. 129–130. https://doi.org/10.1016/B978-0-7506-5148-6.X5000-4

    Article  Google Scholar 

  19. Xu, J.Z., Zhong, G.-J., Hsiao, B.S., Fua, Q., and Li, Z.-M., Prog. Polym. Sci., 2014, vol. 39, pp. 555–593. https://doi.org/10.1016/j.progpolymsci.2013.06.005

    Article  CAS  Google Scholar 

  20. Cruz-Delgado, V.J., Ávila-Orta, C.A., Espinoza-Martínez, A.B., Mata-Padilla, J.M., Solis-Rosales, S.G., Jalbout, A.F., Medellín-Rodríguez, F.J., and Hsiao, B.S., Polymer, 2014, vol. 55, pp. 642–650. https://doi.org/10.1016/j.polymer.2013.12.029

    Article  CAS  Google Scholar 

  21. Ning, N., Fu, S., Zhang, W., Chen, F., Wang, K., Deng, H., Zhang, Q., and Fu, Q., Prog. Polym. Sci., 2012, vol. 37, pp. 1425–1455. https://doi.org/10.1016/j.progpolymsci.2011.12.005

    Article  CAS  Google Scholar 

  22. Heeley, E.L., Hughes, D.J., Crabb, E.M., Bowen, J., Bikondo, O., Mayoral, B., Leung, S., and McNally, T., Polymer, 2017, vol. 117, pp. 208–219. https://doi.org/10.1016/j.polymer.2017.04.033

    Article  CAS  Google Scholar 

  23. Karger-Kocsis, J., Mahmood, H., Pegoretti, A., Prog. Mater. Sci., 2015, vol. 73, pp. 1–43. https://doi.org/10.1016/j.pmatsci.2015.02.003

    Article  CAS  Google Scholar 

  24. Choi, N.-S. and Takahashi, K., Handbook of Thermoplastic Polymers: Homo-polymers, Copolymers and Composites, Fakirov, S., Ed., Weinheim: Wiley-VCH Verlag GmbH, 2002. https://doi.org/10.1002/3527601961.ch25a

    Book  Google Scholar 

  25. Gauthier, C., Chailan, J.-F., and Chauchard, J., Die Makromolekulare Chemie, 1992, vol. 193, pp. 1001–1009. https://doi.org/10.1002/macp.1992.021930416

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of task 6.53 of the state program of scientific research “Physical materials science, new materials and technologies,” subprogram “Polymer materials and technologies” of the National Academy of Sciences of Belarus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Aderikha.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 6, pp. 758–766, January, 2021 https://doi.org/10.31857/S0044461821060104

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovskii, V.V., Aderikha, V.N., Pesetskii, S.S. et al. Hybrid Filling of Polyethylene Terephthalate with Multi-Walled Carbon Nanotubes and Short Glass Fibers. Russ J Appl Chem 94, 768–776 (2021). https://doi.org/10.1134/S1070427221060100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221060100

Keywords:

Navigation