Skip to main content
Log in

A New Approach to the Synthesis of Diethyl 2,3-Diisobutylsuccinate, a Component of Titanium–Magnesium Catalysts for Propylene Polymerization

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A procedure was developed for preparing 2,3-dialkyl-substituted succinates by condensation of a succinic acid diester with two isobutyraldehyde molecules, followed by esterification and hydrogenation of the sum of dienes. Diethyl 2,3-diisobutylsuccinate of 75–99% purity was prepared by this procedure in a good yield. The use of the synthesized diethyl 2,3-diisobutylsuccinate as a stereoregulating component of titanium–magnesium catalysts allows synthesis of polypropylene with broad molecular-mass distribution. The catalysts prepared using >95% pure diethyl 2,3-diisobutylsuccinate have the best characteristics and allow preparation of polypropylene with high isotacticity index in a high yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Taniike, T. and Terano, M., Adv. Polym. Sci., 2013, vol. 257, pp. 81–98. https://doi.org/10.1007/12_2013_224

    Article  CAS  Google Scholar 

  2. Patent WO 2000/063261, Publ. 2000.

  3. Patent WO 2013/029767, Publ. 2013.

  4. Vittoria, A., Meppelder, A., Friederichs, N., Busico, V., and Cipullo, R., ACS Catal., 2017, vol. 7, no. 7, pp. 4509–4518. https://doi.org/10.1021/acscatal.7b01232

    Article  CAS  Google Scholar 

  5. Hamedani, N.G., Arabi, H., and Poorsank, F., New J. Chem., 2020, vol. 44, pp. 15758–15768. https://doi.org/10.1039/d0nj02676j

    Article  CAS  Google Scholar 

  6. Salakhov, I.I., Bukatov, G.D., Batyrshin, A.Z., Matsko, M.A., Barabanov, A.A., Tavtorkin, A.N., Temnikova, E.V., and Sakhabutdinov, A.G., Russ. J. Appl. Chem., 2019, vol. 92, no. 6, pp. 796−808. https://doi.org/10.1134/S1070427219060090

    Article  CAS  Google Scholar 

  7. Long, N.R. and Rathke, W., Synth. Commun., 1981, vol. 11, no. 9, pp. 687–696. https://doi.org/10.1080/00397918108063646

    Article  CAS  Google Scholar 

  8. Champagne, Ph. J. and Renaud, R.N., Can. J. Chem., 1980, vol. 58, no. 11, pp. 1101–1105. https://doi.org/10.1139/v80-171

    Article  CAS  Google Scholar 

  9. Patent CN 103145553, Publ. 2013.

  10. Tan, D.Q., Younai, A., Pattawong, O., Fettinger, J.C., Cheong, P.H.-Y., and Shaw, J.T., Org. Lett., 2013, vol. 15, no. 19, pp. 5126–5129, Suppl. Inform. S. 5. https://doi.org/10.1021/ol402554n

    Article  CAS  PubMed  Google Scholar 

  11. Repinskaya, I.B. and Shvartsberg, M.S., Izbrannye metody sinteza organicheskikh soedinenii (Selected Methods for Synthesis of Organic Compounds), Novosibirsk: Novosibirskii Univ., 2000, p. 80.

    Google Scholar 

  12. Patent RU 2152404, Publ. 2000.

  13. Zelinsky, N., Ber. Deutsch. Chem. Ges., 1888, vol. 21, pp. 3160–3172.

    Article  Google Scholar 

  14. Stobbe, H., Justus Liebigs Ann. Chem., 1911, vol. 380, pp. 1–129. https://archive.org/details/JustusLiebigsAnnalenDerChemieVolume380.

    Article  CAS  Google Scholar 

  15. Burk, M.J., Bienewald, F., Harris, M., and Zanotti-Gerosa, A., Angew. Chem., Int. Ed., 1998, vol. 37, nos. 13–14, pp. 1931–1933. https://doi.org/10.1002/(SICI)1521-3773(19980803)37:13/14<1931::AID-ANIE1931>3.0.CO;2-3

    Article  CAS  Google Scholar 

  16. Patent US 2003/181743, Publ. 2003.

  17. Patent WO 02/098837, Publ. 2002.

  18. Poklukar, G., Stephan, M., and Mohar, B., Adv. Synth. Catal., 2018, vol. 360, pp. 2566–2570. https://doi.org/10.1002/adsc.201800255

    Article  CAS  Google Scholar 

  19. Ballini, R., Bosica, G., Fiorini, D., and Righi, P., Synthesis, 2002, no. 5, pp. 681–685. https://doi.org/10.1055/s-2002-23548

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Chemical Research Center for Shared Use, Siberian Branch, Russian Academy of Sciences for performing spectral and analytical measurements.

Author information

Authors and Affiliations

Authors

Contributions

I.V. Nechepurenko developed and implemented schemes for preparing organic compounds, interpreted the GC–MS patterns and NMR spectra, and wrote the manuscript; I.Ya. Mainagashev synthesized the organic compounds; A.A. Barabanov synthesized, studied, and tested catalyst samples and wrote the manuscript; S.A. Sergeev synthesized the catalysts; G.D. Bukatov developed and optimized the catalysts preparation procedure; V.A. Zakharov formulated tasks on catalysts preparation; M.A. Mats’ko formulated tasks on catalysts preparation and polymerization and wrote the manuscript; K.P. Volcho formulated tasks, developed schemes of the synthesis of organic compounds, and wrote the manuscript; N.F. Salakhutdinov formulated tasks and developed schemes of the synthesis of organic compounds.

Corresponding author

Correspondence to I. V. Nechepurenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 6, pp. 699–710, January, 2021 https://doi.org/10.31857/S0044461821060037

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechepurenko, I.V., Mainagashev, I.Y., Barabanov, A.A. et al. A New Approach to the Synthesis of Diethyl 2,3-Diisobutylsuccinate, a Component of Titanium–Magnesium Catalysts for Propylene Polymerization. Russ J Appl Chem 94, 715–725 (2021). https://doi.org/10.1134/S1070427221060033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221060033

Keywords:

Navigation