Skip to main content
Log in

Microporous-activated carbons of type I adsorption isotherm derived from sugarcane bagasse impregnated with zinc chloride

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Sugarcane bagasse has been used as a substrate for the development of microporous nano-activated carbons for the treatment and elimination of dissolved materials from aquatic environment. The activated carbon was produced using chemical activation in one-step method with zinc chloride (ZnCl2) as the activating agent at a carbonization temperatures range from 500 to 900 °C. The effects of temperature and time of carbonization on the activated carbon product properties were thoroughly studied. The activated carbons that resulted were characterized using the N2 adsorption/desorption isotherms, Brunauer–Emmett–Teller method (BET), pore property analysis, micropore (MP) surface area, t-plot surface area, TGA, FTIR, SEM, TEM, and EDX analyses. The prepared activated carbon's point of zero charge, Boehm titration process, iodine removal percentage, and methylene blue number were also investigated. The prepared activated carbon's maximum surface area was achieved using a 2/1 impregnation ratio (dried sugarcane bagasse/ZnCl2) at 600 °C temperature of carbonization and 60 min residence time. 1402.2 m2/g, 0.6214 and 1.41 cm3/g, respectively, were the largest surface area, total pore volume, and micropore volume. As the activation temperature increased, the total pore volume increased and the BET study measured a pore diameter of 0.7 nm and a mean pore diameter of 1.77 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data transparency complies with field standards.

Abbreviations

AC:

Activated carbon

a M :

Micropore surface area

a T :

Total surface area

BET:

Brunauer–Emmett–Teller

C 0 :

Initial concentration (mg/L)

C e :

Equilibrium concentration (mg/L)

D P :

Mean pore diameter

DTG:

Deferential thermal analysis

EDX:

Energy-dispersive X-ray analysis

FTIR:

Fourier-transform infrared

IRP:

Iodine removal percentage

IUPAC:

International Union of Pure and Applied Chemistry

MB:

Methylene blue

MBN:

Methylene blue number

MP:

Micropore analysis

pHZPC :

Zero point of charge

PSD:

Pore size distribution

SCB:

Sugarcane bagasse

SBAC:

Activated carbon from sugarcane bagasse

S BET :

Specific surface area (m2/g)

SEM:

Scanning electron microscope

S mi :

Micropore surface area

t :

Time (min)

T :

Absolute temperature

TEM:

Transmission electron microscope

TGA:

Thermogravimetric analysis

V :

Volume of the solution (L)

V mi :

Micropore volume

V T :

Total pore volume (cm3/g)

W :

Mass of dry adsorbent (g)

References

  1. Khaled A, El Nemr A, El-Sikaily A, Abdelwahab O (2009) Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies. J Hazard Mater 165:100–110. https://doi.org/10.1016/j.jhazmat.2008.09.122

    Article  CAS  Google Scholar 

  2. Khaled A, El Nemr A, El-Sikaily A, Abdelwahab O (2009) Treatment of artificial textile dye effluent containing direct yellow 12 by orange peel carbon. Desalination 238:210–232. https://doi.org/10.1016/j.desal.2008.02.014

    Article  CAS  Google Scholar 

  3. Yahya AY, Al-Qodah Z, Zanariah Ngah CW (2015) Agricultural bio-mass materials as potential sustainable precursors used for activated carbon production: a review. Renew Sustain Energy Rev 46:218–235. https://doi.org/10.1016/j.rser.2015.02.051

    Article  CAS  Google Scholar 

  4. Lam SS, Liew RK, Wong YM, Yek NYP, Ma NL, Lee CL, Chase HA (2017) Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J Clean Prod 162:1376–1387. https://doi.org/10.1016/j.jclepro.2017.06.131

    Article  CAS  Google Scholar 

  5. Kwon D, Oh J-I, Lam SS, Moon DH, Kwon EE (2019) Orange peel valorization by pyrolysis under the carbon dioxide environment. Bioresour Technol 285:121356. https://doi.org/10.1016/j.biortech.2019.121356

    Article  CAS  Google Scholar 

  6. Shoaib AGM, El-Sikaily A, El Nemr A, Mohamed AE-DA, Hassan AA (2020) Testing the carbonization condition for high surface area preparation of activated carbon followed type IV from green alga Ulva lactuca. Biomass Convers Biorefinery (in press). https://doi.org/10.1007/s13399-020-00823-w

    Article  Google Scholar 

  7. Shoaib AGM, El-Sikaily A, El Nemr A, Mohamed AE-DA, Hassan AA (2020) Preparation and characterization of highly surface area activated carbons followed Type IV from marine red alga (Pterocladia capillacea) by zinc chloride activation. Biomass Convers Biorefinery (in press). https://doi.org/10.1007/s13399-020-00760-8

    Article  Google Scholar 

  8. El Nemr A (2012) Non-conventional textile waste water treatment. Nova Science Publishers, Inc. Hauppauge New York. [Hard cover ISBN: 978-1-62100-079-2, e-book ISBN: 978-1-62100-228-4], 267 pp

  9. Wang S, Nam H, Nam H (2020) Preparation of activated carbon from peanut shell with KOH activation and its application in H2S adsorption: isotherm and kinetic studies. J Environ Chem Eng 8(2):103683. https://doi.org/10.1016/j.jece.2020.103683

    Article  CAS  Google Scholar 

  10. Kumar A, Jena HM (2015) High surface are a microporous activated carbons prepared from fox nut (Euryale ferox) shell by zinc chloride activation. Appl Surf Sci 356:753–761

    Article  CAS  Google Scholar 

  11. Serag E, El Nemr A, El-Maghraby A (2017) Synthesis of highly effective novel graphene oxide-polyethylene glycol-polyvinyl alcohol nano composite hydrogel for copper removal. J Water Environ Nanotechnol 2(4):223–234. https://doi.org/10.22090/jwent.2017.04.001

    Article  CAS  Google Scholar 

  12. Serag E, El Nemr A, Abdel Hamid FF, Fathy SA, El-Maghraby A (2018) A novel three dimensional carbon nanotube-polyethylene glycol–polyvinyl alcohol nanocomposite for Cu(II) removal from water. Egypt J Aquat Biol Fisher 22(2):103–118

    Article  Google Scholar 

  13. El Nemr A, Ragab S (2018) Acetylation of Cotton-Giza 86 cellulose using MnCl2 as a new catalyst and its application to machine oil removal. Environ Processes 5(4):895–905. https://doi.org/10.1007/s40710-018-0330-7

    Article  Google Scholar 

  14. Alghamdi MM, El-Zahhar AA, Idris AM, Sadi TO, Sahlabji T, El Nemr A (2019) Synthesis, characterization and application of a new polymeric-clay-magnetite composite resin for water softening. Sep Purif Technol 224:356–365. https://doi.org/10.1016/j.seppur.2019.05.037

    Article  CAS  Google Scholar 

  15. Eldeeb TM, El Nemr A, Khedr MH, El-Dek SI, Imam NG (2020) Novel, three-dimensionoal, chitosan-carbon nanotube–PVA nanocomposite hydrogel for removal of Cr6+ from water. Desalin Water Treat 184:163–177. https://doi.org/10.5004/dwt.2020.25366

    Article  CAS  Google Scholar 

  16. El Nemr A (2007) Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater. Chem Ecol 23(5):409–425

    Article  Google Scholar 

  17. El Nemr A (2009) Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies. J Hazard Mater 161:132–141

    Article  Google Scholar 

  18. El Sikaily A, El Nemr A, Khaled A (2011) Copper sorption onto dried red alga Pterocladia capillacea and its activated carbon. Chem Eng J 168:707–714. https://doi.org/10.1016/j.cej.2011.01.064

    Article  CAS  Google Scholar 

  19. El Nemr A, El Sadaawy MM, Khaled A, El Sikaily A (2014) Adsorption of the anionic dye Direct Red 23 onto new activated carbons developed from Cynara cardunculus: Kinetics, equilibrium and thermodynamics. Blue Biotechnol J 3(1):121–142

    Google Scholar 

  20. El Nemr A, El Sikaily A, Khaled A, Abdelwahab O (2015) Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab J Chem 8:105–117. https://doi.org/10.1016/j.arabjc.2011.01.016

    Article  CAS  Google Scholar 

  21. González JF, Román S, Encinar JM, Martínez G (2009) Pyrolysis of various biomass residues and char utilization for the production of activated carbons. J Anal Appl Pyrol 85(1–2):134–141. https://doi.org/10.1016/j.jaap.2008.11.035

    Article  CAS  Google Scholar 

  22. Daud W (2004) Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour Technol 93(1):63–69. https://doi.org/10.1016/j.biortech.2003.09.015

    Article  CAS  Google Scholar 

  23. Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crops Prod 28:190–198

    Article  CAS  Google Scholar 

  24. Huynh LTN, Pham TN, Nguyen TH, Le VH, Nguyen TT, Nguyen TDK, Tran TN, Ho PAV, Thien CT, Nguyen TTT, Anh VTK, Nguyen TH, Thu VT, Luong VM, Uyama H, Pham GV, Hoang T, Tran DL (2020) Coconut shell-derived activated carbon and carbon nanotubes composite: a promising candidate for capacitive deionization electrode. Synth Met 265:116415. https://doi.org/10.1016/j.synthmet.2020.116415

    Article  CAS  Google Scholar 

  25. El Nemr A, El-Sikaily A, Khaled A (2010) Modeling of adsorption isotherms of Methylene Blue onto rice husk activated carbon. Egypt J Aquat Res 36(3):403–425

    Google Scholar 

  26. Dalai C, Jha R, Desai VR (2015) Rice husk and sugarcane bagasse based activated carbon for iron and manganese removal. J Aquat Proc 4:1126–1133. https://doi.org/10.1016/j.aqpro.2015.02.143

    Article  Google Scholar 

  27. Kalderis D, Koutoulakis D, Paraskeva P, Diamadopoulos E, Otal E, Olivares del Valle J, Ferńandez Pereira C (2008) Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem Eng J 144:42–50. https://doi.org/10.1016/j.cej.2008.01.007

    Article  CAS  Google Scholar 

  28. Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E (2008) Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour Technol 99:6809–6816. https://doi.org/10.1016/j.biortech.2008.01.041

    Article  CAS  Google Scholar 

  29. Om Prakash M, Raghavendra G, Ojha S, Panchal M (2021) Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method. Mater Today Proc 39(4):1476–1481. https://doi.org/10.1016/j.matpr.2020.05.370

    Article  CAS  Google Scholar 

  30. Açıkyıldız M, Gürsesm A, Karaca S (2014) Preparation and characterization of activated carbon from plant wastes with chemical activation. Microporous Mesoporous Mater 198:45–49. https://doi.org/10.1016/j.micromeso.2014.07.018

    Article  CAS  Google Scholar 

  31. El Nemr A, Abdelwahab O, El-Sikaily A, Khaled A (2009) Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel. J Hazard Mater 161:102–110. https://doi.org/10.1016/j.jhazmat.2008.03.060

    Article  CAS  Google Scholar 

  32. El Nemr A, Aboughaly RM, El Sikaily A, Ragab S, Masoud MS, Ramadan MS (2020) Microporous nano activated carbon type I derived from orange peel and its application for Cr(VI) removal from aquatic environment. Biomass Convers Biorefinery (in press). https://doi.org/10.1007/s13399-020-00995-5

  33. Köseoğlu E, Akmil-Basar C (2015) Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol 26(3):811–818. https://doi.org/10.1016/j.apt.2015.02.006

    Article  CAS  Google Scholar 

  34. Liu Q-S, Zheng T, Wang P, Guo L (2010) Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind Crops Prod 31:233–238

    Article  CAS  Google Scholar 

  35. Negara DNKP, Nindhia TGT, Surata IW, Hidajat F, Sucipta M (2020) Textural characteristics of activated carbons derived from tabah bamboo manufactured by using H3PO4 chemical activation. Mater Today Proc 22:148–155. https://doi.org/10.1016/j.matpr.2019.08.030

    Article  CAS  Google Scholar 

  36. Lua AC, Guo J (2001) Preparation and characterization of activated carbons from oil-palm stones for gas-phase adsorption. Colloids Surf A 179:151–162. https://doi.org/10.1016/S0927-7757(00)00651-8

    Article  CAS  Google Scholar 

  37. Adilla Rashidi N, Yusup SA (2017) Review on recent technological advancement in the activated carbon production from oil palm wastes. Chem Eng J 314:277–290. https://doi.org/10.1016/j.cej.2016.11.059

    Article  CAS  Google Scholar 

  38. Şentorun-Shalaby Ç, Uçak-Astarlıoğlu MG, Artok L, Sarıcı Ç (2006) Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones. Microporous Mesoporous Mater 88(1–3):126–134. https://doi.org/10.1016/j.micromeso.2005.09.003

    Article  CAS  Google Scholar 

  39. Abbas M (2020) Modeling of adsorption isotherms of heavy metals onto apricot stone activated carbon: two-parameter models and equations allowing determination of thermodynamic parameters. Mater Today Proc (in press). https://doi.org/10.1016/j.matpr.2020.05.320

    Article  Google Scholar 

  40. Angin D (2014) Production and characterization of activated carbon from sour cherry stones by zinc chloride. Fuel 115:804–811. https://doi.org/10.1016/j.fuel.2013.04.060

    Article  CAS  Google Scholar 

  41. Venegas-Gomez A, Gomez-Corzo M, Macías-García A, Carrasco-Amador JP (2020) Charcoal obtained from cherry stones in different carbonization atmospheres. J Environ Chem Eng 8:103561. https://doi.org/10.1016/j.jece.2019.103561

    Article  CAS  Google Scholar 

  42. Martinez M, Torres M, Guzman C, Maestri D (2010) Preparation and characteristics of activated carbon fromolive stones and walnut shells. Ind Crops Prod 23(1):23–28. https://doi.org/10.1016/j.indcrop.2005.03.001

    Article  CAS  Google Scholar 

  43. Al-Ghouti MA, Sweleh AO (2020) Optimizing textile dye removal by activated carbon prepared from olive stones. Environ Tech Innov 16:100488. https://doi.org/10.1016/j.eti.2019.100488

    Article  Google Scholar 

  44. Hayashi J, Horikawa T, Takeda I, Muroyama K, Nasir Ani F (2002) Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 40:2381–2386. https://doi.org/10.1016/S0008-6223(02)00118-5

    Article  CAS  Google Scholar 

  45. Lima DR, Hosseini-Bandegharaei A, Thue PS, Lima EC, de Albuquerque YRT, dos Reis GS, Umpierres CS, Dias SLP, Tran HN (2019) Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids Surf A 583:123966. https://doi.org/10.1016/j.colsurfa.2019.123966

    Article  CAS  Google Scholar 

  46. Deng H, Yang L, Tao G, Dai J (2009) Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-application in methylene blue adsorption from aqueous solution. J Hazard Mater 166(2–3):1514–1521. https://doi.org/10.1016/j.jhazmat.2008.12.080

    Article  CAS  Google Scholar 

  47. Zhang X, Li C, Qu J, Guo Q, Huang K (2019) Cotton stalk activated carbon-supported Co–Ce–B nanoparticles as efficient catalysts for hydrogen generation through hydrolysis of sodium borohydride. Carbon Resour Conver 2:225–232. https://doi.org/10.1016/j.crcon.2019.11.001

    Article  CAS  Google Scholar 

  48. Momčilović M, Purenović M, Bojić A, Zarubica A, Ranđelović M (2011) Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276:53–59. https://doi.org/10.1016/j.desal.2011.03.013

    Article  CAS  Google Scholar 

  49. Sarabandi Dh, Roudini G, Barahuie F (2019) Activated carbon derived from pine cone as a framework for the preparation of n-heptadecane nanocomposite for thermal energy storage. J Energy Storage 24:100795. https://doi.org/10.1016/j.est.2019.100795

    Article  Google Scholar 

  50. Malik R, Ramteke DS, Wate S (2007) Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manage 27:1129–1138. https://doi.org/10.1016/j.wasman.2006.06.009

    Article  CAS  Google Scholar 

  51. Duc PA, Dharanipriya P, Velmurugan BK, Shanmugavadivu M (2019) Groundnut shell—a beneficial bio-waste. Biocatal Agric Biotechnol 20:101206. https://doi.org/10.1016/j.bcab.2019.101206

    Article  Google Scholar 

  52. Arami-Niya A, Daud WMAW, Mjalli FS (2010) Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption. J Anal Appl Pyrol 89(2):197–203. https://doi.org/10.1016/j.jaap.2010.08.006

    Article  CAS  Google Scholar 

  53. Kittappa S, Jais FM, Ramalingam M, Ibrahim S (2020) Functionalized magnetic mesoporous palm shell activated carbon for enhanced removal of azo dyes. J Environ Chem Eng 8(5):104081. https://doi.org/10.1016/j.jece.2020.104081

    Article  CAS  Google Scholar 

  54. Saka C (2012) BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J Anal Appl Pyrol 95:21–24. https://doi.org/10.1016/j.jaap.2011.12.020

    Article  CAS  Google Scholar 

  55. Zhong Z-Y, Yang Q, Li X-M, Luo K, Liu Y, Zeng G-M (2012) Preparation of peanut hull based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption. Ind Crops Prod 37(1):178–185. https://doi.org/10.1016/j.indcrop.2011.12.015

    Article  CAS  Google Scholar 

  56. Wu M, Guo Q, Fu G (2013) Preparation and characteristics of medicinal activated carbon powders by CO2 activation of peanut shells. Powder Technol 247:188–196. https://doi.org/10.1016/j.powtec.2013.07.013

    Article  CAS  Google Scholar 

  57. Oliveira LCA, Pereira E, Guimaraes IR, Vallone A, Pereira M, Mesquita JP, Sapag K (2009) Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J Hazard Mater 165(1–3):87–94. https://doi.org/10.1016/j.jhazmat.2008.09.064

    Article  CAS  Google Scholar 

  58. El Nemr A, Shoaib AGM, El Sikaily A, Mohamed AE-DA, Hassan AF (2021) Evaluation of cationic methylene blue dye removal by high surface area mesoporous nano activated carbon derived from Ulva lactuca. Environ Process 8(1):311–332. https://doi.org/10.1007/s40710-020-00487-8

    Article  CAS  Google Scholar 

  59. El-Nemr MA, Ismail IMA, Abdelmonem NM, El Nemr A, Ragab S (2020) Amination of biochar derived from watermelon peel by triethylenetetramine and ammonium hydroxide for toxic chromium removal enhancement. CJCE (in press)

  60. El-Nemr MA, Abdelmonem NM, Ismail IMA, Ragab S, El Nemr A (2020) Removal of acid yellow 11 dye using novel modified biochar derived from watermelon peels. Desalin Water Treat 203:403–431

    Article  CAS  Google Scholar 

  61. El-Nemr MA, Ismail IMA, Abdelmonem NM, Ragab S, El Nemr A (2020) Ozone and ammonium hydroxide modification of biochar prepared from Pisum sativum peels improves the adsorption of copper (II) from an aqueous medium. Environ Process 7:973–1007. https://doi.org/10.1007/s40710-020-00455-2

    Article  CAS  Google Scholar 

  62. El-Nemr MA, Abdelmonem NM, Ismail IMA, Ragab S, El Nemr A (2020) The efficient removal of the hazardous azo dye acid orange 7 from water using modified biochar from pea peels. Desalin Water Treat 203:327–355

    Article  CAS  Google Scholar 

  63. Okman I, Karagöz S, Tay T, Erdem M (2014) Activated carbons from grape seeds by chemical activation with potassium carbonate and potassium hydroxide. Appl Surf Sci 293:138–142. https://doi.org/10.1016/j.apsusc.2013.12.117

    Article  CAS  Google Scholar 

  64. Sağili H, Güzel F (2016) High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J Clean Prod 113:995–1004. https://doi.org/10.1016/j.jclepro.2015.12.055

    Article  CAS  Google Scholar 

  65. Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenerg 115:64–73. https://doi.org/10.1016/j.biombioe.2018.04.015

    Article  CAS  Google Scholar 

  66. Kamran U, Heo Y-J, Lee JW, Park S-J (2019) Chemically modified activated carbon decorated with MnO2 nano composites for improving lithium adsorption and recovery from aqueous media. J Alloys Compd 794:425–434. https://doi.org/10.1016/j.jallcom.2019.04.211

    Article  CAS  Google Scholar 

  67. Qezelsefloo E, Khalili S, Jahanshahi M, Peyravi M (2019) Adsorptive removal of CO2 on Nitrogen-doped porous carbon derived from polyaniline: effect of chemical activation. Mater Chem Phys 239:122304. https://doi.org/10.1016/j.matchemphys.2019.122304

    Article  CAS  Google Scholar 

  68. Veerakumar P, Maiyalagan T, Gnana Sundara Raj B, Guruprasad K, Jiang Z, Lin K-C (2020) Paper flower-derived porous carbons with high-capacitance by chemical and physical activation for sustainable applications. Arab J Chem 13:2995–3007. https://doi.org/10.1016/j.arabjc.2018.08.009

    Article  CAS  Google Scholar 

  69. İzgi MS, Saka C, Baytar O, Saraçoğlu G, Şahin Ö (2018) Preparation and characterization of activated carbon from microwave and conventional heated almond shells using phosphoric acid activation. Anal Lett 52:772–789. https://doi.org/10.1080/00032719.2018.1495223

    Article  CAS  Google Scholar 

  70. Guo J, Song Y, Ji X, Ji L, Cai L, Wang Y, Song W (2019) Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions. Materials 12(2):241. https://doi.org/10.3390/ma12020241

    Article  CAS  Google Scholar 

  71. Tazibet S, Boucheffa Y, Lodewyckx P, Velasco LF, Boutillara Y (2016) Evidence for the effect of the cooling down step on activated carbon adsorption properties. Microporous Mesoporous Mater 221:67–75. https://doi.org/10.1016/j.micromeso.2015.09.016

    Article  CAS  Google Scholar 

  72. Li Y, Li Y, Zang H, Chen L, Meng Z, Li H, Ci L, Du Q, Wang D, Wang C, Li H, Xia Y (2019) ZnCl2 activated carbon from soybean dregs as a high efficiency adsorbent for cationic dye removal: Isotherm, kinetic, and thermodynamic studies. Environ Tech. https://doi.org/10.1080/09593330.2018.1554006

    Article  Google Scholar 

  73. Tsai W, Chang C, Lin M, Chien S, Sun H, Hsieh M (2001) Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere 45(1):51–58. https://doi.org/10.1016/S0045-6535(01)00016-9

    Article  CAS  Google Scholar 

  74. Juang R-S, Wu F-C, Tseng R-L (2002) Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption. Colloids Surf A 201(1–3):191–199. https://doi.org/10.1016/S0927-7757(01)01004-4

    Article  CAS  Google Scholar 

  75. Gupta VK, Jain CK, Ali I, Sharma M, Saini VK (2003) Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res 37(16):4038–4044. https://doi.org/10.1016/S0043-1354(03)00292-6

    Article  CAS  Google Scholar 

  76. Amin NK (2008) Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. J Desal 223:152–161. https://doi.org/10.1016/j.desal.2007.01.203

    Article  CAS  Google Scholar 

  77. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195(3):912–918. https://doi.org/10.1016/j.jpowsour.2009.08.048

    Article  CAS  Google Scholar 

  78. Purnomo CW, Salim C, Hinode H (2011) Preparation and characterization of activated carbon from bagasse fly ash. J Anal Appl Pyrol 91(1):257–262. https://doi.org/10.1016/j.jaap.2011.02.017

    Article  CAS  Google Scholar 

  79. Yadav AK, Abbassi R, Gupta A, Dadashzadeh M (2013) Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecol Eng 52:211–218. https://doi.org/10.1016/j.ecoleng.2012.12.069

    Article  Google Scholar 

  80. Tao H-C, Zhang H-R, Li J-B, Ding L-Y (2015) Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater. Bioresour Technol 192:611–617. https://doi.org/10.1016/j.biortech.2015.06.006

    Article  CAS  Google Scholar 

  81. Guo Y, Tan C, Sun J, Li W, Zhang J, Zhao C (2020) Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption. Chem Eng J 381:122736. https://doi.org/10.1016/j.cej.2019.122736

    Article  CAS  Google Scholar 

  82. FAO (2019) Sugarcane production in 2017, crops/regions/world list/production quantity (pick lists). UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT) 2019. http://www.fao.org/faostat/en/#data/QC. Retrieved 23 February 2020

  83. Lua AC, Yang T (2005) Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. J Coll Interface Sci 290(2):505–513. https://doi.org/10.1016/j.jcis.2005.04.063

    Article  CAS  Google Scholar 

  84. El Nemr A (2008) Organic hydrocarbons in surface sediments of the Mediterranean coast of Egypt: distribution and sources. Egypt J Aquat Res 34(3):36–57

    Google Scholar 

  85. Salem DMSA, El Sikaily A, El Nemr A (2014) Organocholorines and their risk in marine shellfish collected from the Mediterranean coast, Egypt. Egypt J Aquat Res 40:93–101. https://doi.org/10.1016/j.ejar.2014.03.004

    Article  Google Scholar 

  86. Salem DMSA, Morsy FA-EM, El Nemr A, El-Sikaily A, Khaled A (2014) The monitoring and risk assessment of aliphatic and aromatic hydrocarbons (PAHs) in sediments of the Red Sea, Egypt. Egypt J Aquat Res 40:333–348. https://doi.org/10.1016/j.ejar.2014.11.003

    Article  Google Scholar 

  87. El Nemr A, Moneer AA, Ragab S, El Sikaily A (2016) Distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in Shellfish of the Egyptian Red Sea coast. Egypt J Aquat Res 42:121–131. https://doi.org/10.1016/j.ejar.2016.05.003

    Article  Google Scholar 

  88. Ragab S, El Sikaily A, El Nemr A (2016) Concentrations and sources of pesticides and PCBs in surficial sediments of the Red Sea Coast, Egypt. Egypt J Aquat Res 42:365–374

    Article  Google Scholar 

  89. Sugumaran P, Priya Susan V, Ravichandran P, Seshadri S (2012) Production and characterization of activated carbon from banana empty fruit and Delonix regia fruit pod. J Sustain Energy Environ 3:125–132

    Google Scholar 

  90. Rengaraj S, Moon S-H, Sivabalan R, Arabindoo B, Murugesan V (2002) Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Manage 22(5):543–548. https://doi.org/10.1016/S0956-053X(01)00016-2

    Article  CAS  Google Scholar 

  91. Rostamian R, Heidarpour M, Mousavi FS, Afyuni M (2015) Characterization and sodium sorption capacity of biochars and activated carbon prepared from rice husk. J Agricultural Sci Tech 17:1057–1069

    Google Scholar 

  92. Cheung WH, Lau SSY, Leung SY, Ip AWM, McKay G (2012) Characteristics of chemical modified activated carbons from bamboo scaffolding. Chinese J Chem Eng 20(3):515–523. https://doi.org/10.1016/S1004-9541(11)60213-9

    Article  CAS  Google Scholar 

  93. El Nemr A, Eleryan A, Mashaly M, Khaled A (2020) Comparative study of synthesis of cellulose propionate from different sources using NIS as a new catalyst. Polym Bull (in press). https://doi.org/10.1007/s00289-020-03313-1

    Article  Google Scholar 

  94. El Nemr A, Eleryan A, Mashaly M, Khaled A (2020) Rapid synthesis of cellulose propionate and its conversion to cellulose nitrate propionate. Polym Bull (in press). https://doi.org/10.1007/s00289-020-03317-x

    Article  Google Scholar 

  95. Ragab S, El Nemr A (2018) Nanofiber cellulose Di- and Tri-acetate using ferric chloride as a catalyst promoting highly efficient synthesis under microwave irradiation. J Macromol Sci A Pure Appl Chem 55(2):124–134. https://doi.org/10.1080/10601325.2017.1387741

    Article  CAS  Google Scholar 

  96. Acharya J, Sahu JN, Sahoo BK, Mohanty CR, Meikap BC (2009) Removal of chromium (VI) from wastewater by activated carbon developed from tamarind wood activated with zinc chloride. Chem Eng J 150:25–39. https://doi.org/10.1016/j.cej.2008.11.035

    Article  CAS  Google Scholar 

  97. Yorgun S, Vural N, Demiral H (2009) Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous Mesoporous Mater 122(1–3):189–194. https://doi.org/10.1016/j.micromeso.2009.02.032

    Article  CAS  Google Scholar 

  98. Sahu JN, Acharya J, Meikap BC (2010) Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology. Bioresour Technol 101(6):1974–1982. https://doi.org/10.1016/j.biortech.2009.10.031

    Article  CAS  Google Scholar 

  99. Mahamad MN, Zaini MAA, Zakaria ZA (2015) Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int Biodeterior Biodegrad 102:274–280. https://doi.org/10.1016/j.ibiod.2015.03.009

    Article  CAS  Google Scholar 

  100. Uçar S, Erdem M, Tay T, Karagöz S (2009) Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Appl Surf Sci 255(21):8890–8896. https://doi.org/10.1016/j.apsusc.2009.06.080

    Article  CAS  Google Scholar 

  101. Caturla F, Molina-Sabio M, Rodriguez-Reinoso F (1991) Preparation of activated carbon by chemical activation with ZnCl2. Carbon 29:999–1007

    Article  CAS  Google Scholar 

  102. Azevedo DCS, Araújo JCS, Bastos-Neto M, Torres AEB, Jaguaribe EF, Cavalcante CL (2007) Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous Mesoporous Mater 100(1–3):361–364. https://doi.org/10.1016/j.micromeso.2006.11.024

    Article  CAS  Google Scholar 

  103. El Nemr A, Aboughaly RM, El Sikaily A, Ragab S, Masoud MS, Ramadan MS (2021) Utilization of sugarcane bagasse/ZnCl2 for sustainable production of microporous nano-activated carbons of type I for toxic Cr (VI) removal from aqueous environment. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01445-6

    Article  Google Scholar 

  104. Sing KSW, Everret DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  105. Mustafa R, Asmatulu E (2020) Preparation of activated carbon using fruit, paper and clothing wastes for wastewater treatment. J Water Process Eng 35:101239. https://doi.org/10.1016/j.jwpe.2020.101239

    Article  Google Scholar 

  106. Dobahi A, Shu Y, Hasegawa T, Maruyama J, Iwasaki S, Shen Y, Uyama H (2015) Preparation of activated carbon by KOH activation from Amygdalus pedunculata shell and its application for electric double-layer capacitor. J Electrochem 83(5):351–353. https://doi.org/10.5796/electrochemistry.83.351

    Article  CAS  Google Scholar 

  107. Park SH, McClain S, Tian ZR, Suib SL, Karwacki C (1997) Surface and bulk measurements of metals deposited on activated carbon. Chem Mater 9(1):176–183. https://doi.org/10.1021/cm9602712

    Article  CAS  Google Scholar 

  108. Hosain ANA, El Nemr A, El Sikaily A, Mahmoud ME, Amira MF (2020) Surface modifications of nanochitosan coated magnetic nanoparticles and their applications in Pb(II), Cu(II) and Cd(II) removal. J Environ Chem Eng 8(5):104316. https://doi.org/10.1016/j.jece.2020.104316

    Article  CAS  Google Scholar 

  109. Imamoglu M, Takir O (2008) Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husk. Desalination 228:108–113. https://doi.org/10.1016/j.desal.2007.08.011

    Article  CAS  Google Scholar 

  110. Gergova K, Petrov N, Minkova V (2007) A comparison of adsorption characteristics of various activated carbons. J Chem Tech Biotech 56(1):77–82. https://doi.org/10.1002/jctb.280560114

    Article  Google Scholar 

  111. Gundogdu A, Duran C, Senturk HB, Soylak M, Imamoglu M, Onal Y (2013) Physicochemical characteristics of a novel activated carbon produced from tea industry waste. J Anal Appl Pyrol 104:249–259. https://doi.org/10.1016/j.jaap.2013.07.008

    Article  CAS  Google Scholar 

  112. Sahira J, Mandira A, Prasad BP, Ram RP (2013) Effect of activating agents on the activated carbons prepared from lapsi seed stone. J Chem Sci 3(5):19–24

    Google Scholar 

  113. Ekpete OA, Horsfall MJNR (2011) Preparation and characterization of activated carbon derived from fluted pumpkin stem waste (Telfairia occidentalis hook f). Res J Chem Sci 1(3):10–17

    CAS  Google Scholar 

  114. Raposo F, De La Rubia MA, Borja R (2009) Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: influence of adsorbate/adsorbent mass ratio and particle size. J Hazard Mater 165(1–3):291–299. https://doi.org/10.1016/j.jhazmat.2008.09.106

    Article  CAS  Google Scholar 

  115. Mohanty K, Das D, Biswas MN (2005) Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chem Eng J 115(1–2):121–131. https://doi.org/10.1016/j.cej.2005.09.016

    Article  CAS  Google Scholar 

  116. Kula I, Uğurlu M, Karaoğlu H, Çelik A (2008) Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour Technol 99(3):492–501. https://doi.org/10.1016/j.biortech.2007.01.015

    Article  CAS  Google Scholar 

  117. Uğurlu M, Gürses A, Açıkyıldız M (2008) Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2 activation. Microporous Mesoporous Mater 111(1–3):228–235. https://doi.org/10.1016/j.micromeso.2007.07.034

    Article  CAS  Google Scholar 

  118. Boudrahem F, Aissani-Benissad F, Aït-Amar H (2009) Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J Environ Manage 90:3031–3039. https://doi.org/10.1016/j.jenvman.2009.04.005

    Article  CAS  Google Scholar 

  119. Mohammadi SZ, Karimi MA, Afzali D, Mansouri F (2010) Removal of Pb(II) from aqueous solutions using activated carbon from Sea-buckthorn stones by chemical activation. Desalination 262(1–3):86–93. https://doi.org/10.1016/j.desal.2010.05.048

    Article  CAS  Google Scholar 

  120. Kılıç M, Apaydın-Varol E, Pütün AE (2012) Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Appl Surf Sci 261:247–254. https://doi.org/10.1016/j.apsusc.2012.07.155

    Article  CAS  Google Scholar 

  121. Ceyhan AA, Şahin Ö, Saka C, Yalçın A (2013) A novel thermal process for activated carbon production from the vetch biomass with air at low temperature by two-stage procedure. J Anal Appl Pyrol 104:170–175. https://doi.org/10.1016/j.jaap.2013.08.007

    Article  CAS  Google Scholar 

  122. Nazari G, Abolghasemi H, Esmaieli M (2016) Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon. J Taiwan Inst Chem Eng 58:357–365. https://doi.org/10.1016/j.jtice.2015.06.006

    Article  CAS  Google Scholar 

  123. Üner O, Geçgel Ü, Bayrak Y (2019) Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride. Arab J Chem 12:3621–3627. https://doi.org/10.1016/j.arabjc.2015.12.004

    Article  CAS  Google Scholar 

  124. Sayğılı H, Güzel F, Önal Y (2015) Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. J Clean Prod 93:84–93. https://doi.org/10.1016/j.jclepro.2015.01.009

    Article  CAS  Google Scholar 

  125. Arampatzidou AC, Deliyanni EA (2016) Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bis-phenol-A.J. J Colloid Interface Sci 466:101–112. https://doi.org/10.1016/j.jcis.2015.12.003

    Article  CAS  Google Scholar 

Download references

Funding

The corresponding author is grateful to the Science, Technology & Innovation Funding Authority (STDF) of Egypt for its partial financial support of this work (Project No. CB-4874 and CB-22816).

Author information

Authors and Affiliations

Authors

Contributions

Professor Dr. AEN designed the experiments, supervised the research experiments and wrote the paper. RMA do the experimental work and wrote the paper. Professor Dr. AES, MSM, and MSR supervised the work and gave advice to progress the research work. Dr. SR gave experimental and theoretical work advice and wrote the paper.

Corresponding author

Correspondence to Ahmed El Nemr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Nemr, A., Aboughaly, R.M., El Sikaily, A. et al. Microporous-activated carbons of type I adsorption isotherm derived from sugarcane bagasse impregnated with zinc chloride. Carbon Lett. 32, 229–249 (2022). https://doi.org/10.1007/s42823-021-00270-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00270-1

Keywords

Navigation