Skip to main content

Advertisement

Log in

Hierarchically porous carbon derived from tobacco waste by one-step molten salt carbonization for supercapacitor

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

High-performance carbon materials were prepared via a one-step molten salt carbonization of tobacco waste used as electrode materials for supercapacitors. Carbon material prepared by carbonization for 3 h in molten CaCl2 at 850 °C exhibits hierarchically porous structure and ideal capacitive behavior. In a three-electrode configuration with 1 mol L−1 H2SO4 aqueous solution, it delivers specific capacitance of 196.5 F g−1 at 0.2 A g−1, energy density of 27.2 Wh kg−1 at 0.2 A g−1, power density of 983.5 W kg−1 at 2 A g−1, and excellent cyclic stability with 94% capacitance retention after 5000 charge–discharge cycles at 1 A g−1. Moreover, in a symmetrical two-electrode configuration with 6 mol L−1 KOH aqueous solution, it delivers specific capacitance of 111.1 F g−1 at 0.2 A g−1, energy density of 3.8 Wh kg−1 at 0.2 A g−1, and power density of 482.0 W kg−1 at 2 A g−1. The relationship between hierarchically porous structure and capacitive performance is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  3. Kim SJ, Bai BC, Kim MI, Lee YS (2020) Improved specific capacitance of pitch-based activated carbon by KOH/KMnO4 agent for supercapacitors. Carbon Lett 30:585–591

    Article  Google Scholar 

  4. Zhao Y-Q, Lu M, Tao P-Y, Zhang Y-J, Gong X-T, Yang Z, Zhang G-Q, Li H-L (2016) Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J Power Sources 307:391–400

    Article  CAS  Google Scholar 

  5. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  6. Xu J, Tan Z, Zeng W, Chen G, Wu S, Zhao Y, Ni K, Tao Z, Ikram M, Ji H, Zhu Y (2016) A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv Mater 28:5222–5228

    Article  CAS  Google Scholar 

  7. Lu B, Xiao Z, Zhu H, Xiao W, Wu W, Wang D (2015) Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates. J Power Sources 298:74–82

    Article  CAS  Google Scholar 

  8. Zhu Y, Chen M, Zhang Zhao Wang YWC (2018) A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor. Carbon 140:404–412

    Article  CAS  Google Scholar 

  9. Jin H, Li J, Yuan Y, Wang J, Lu J, Wang S (2018) Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Adv Energy Mater 8:1801007

    Article  Google Scholar 

  10. Le P-A, Nguyen V-T, Sahoo SK, Tseng TY, Wei K-H (2020) Porous carbon materials derived from areca palm leaves for high performance symmetrical solid-state supercapacitors. J Mater Sci 55:10751–10764

    Article  CAS  Google Scholar 

  11. Zhang ZJ, He JJ, Tang XC, Wang YL, Yang BB, Wang KJ, Zhang DY (2019) Supercapacitors based on a nitrogen doped hierarchical porous carbon fabricated by self-activation of biomass: excellent rate capability and cycle stability. Carbon Lett 29:585–594

    Article  Google Scholar 

  12. Suárez L, Centeno TA (2020) Unravelling the volumetric performance of activated carbons from biomass wastes in supercapacitors. J Power Sources 448:227413

    Article  Google Scholar 

  13. Chen Z, Li W, Yang J, Liao J, Chen C, Song Y, Shah SAA, Xu Z, Wu M (2020) Excellent Electrochemical Performance of Potassium Ion Capacitor Achieved by a High Nitrogen Doped Activated Carbon. J Electrochem Soc 167:050506

    Article  CAS  Google Scholar 

  14. Guo Y, Qi J, Jiang Y, Yang S, Wang Z, Xu H (2003) Performance of electrical double layer capacitors with porous carbons derived from rice husk. Mater Chem Phys 80:704–709

    Article  CAS  Google Scholar 

  15. Wu F-C, Tseng R-L, Hu C-C, Wang C-C (2004) Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. J Power Sources 138:351–359

    Article  CAS  Google Scholar 

  16. Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6:1249–1259

    Article  CAS  Google Scholar 

  17. Zhang J, Zhong Z, Shen D, Zhao J, Zhang H, Yang M, Li W (2011) Preparation of bamboo-based activated carbon and its application in direct carbon fuel cells. Energy Fuels 25:2187–2193

    Article  CAS  Google Scholar 

  18. Khan A, Senthil RA, Pan J, Osman S, Sun Y, Shu X (2019) A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application. Electrochim Acta 335:135588

    Article  Google Scholar 

  19. Chen H, Guo Y-C, Wang F, Wang G, Qi P-R, Guo X-H, Dai B, Yu F (2017) An activated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Mater 32:592–599

    Article  CAS  Google Scholar 

  20. Chen R, Li L, Liu Z, Lu M, Wang C, Li H, Ma W, Wang S (2017) Preparation and characterization of activated carbons from tobacco stem by chemical activation. J Air Waste Manage 67:713–724

    Article  CAS  Google Scholar 

  21. Guo G-N, Yang B-B, Zhang Q-M, Zhang C (2019) Porous carbon from tobacco stalk for removal of organic dyes from water. RSC Adv 9:33848–33852

    Article  CAS  Google Scholar 

  22. Rao CN, Subbarayudu K, Vijaya Y, Subbaiah MV (2015) Adsorption of Ni(II) from aqueous solution by activated carbons derived from tobacco stem. Desalin Water Treat 54:3392–3399

    Article  CAS  Google Scholar 

  23. Huang X, Li M, Li J, Song Y (2012) A high-resolution emission inventory of crop burning in fields in China based on MODIS thermal anomalies/fire products. Atmos Environ 50:9–15

    Article  CAS  Google Scholar 

  24. Zhang Z, Engling G, Lin C-Y, Chou CC-K, Lung S-CC, Chang S-Y, Fan S, Chan C-Y, Zhang Y-H (2010) Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China. Atmos Environ 44:3187–3195

    Article  CAS  Google Scholar 

  25. Ding AJ, Fu CB, Yang XQ, Sun JN, Petäjä T, Kerminen V-M, Wang T, Xie Y, Herrmann E, Zheng LF, Nie W, Liu Q, Wei XL, Kulmala M (2013) Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmos Chem Phys 13:10545–10554

    Article  Google Scholar 

  26. Jiang R, Bell ML (2008) A comparison of particulate matter from biomass-burning rural and non-biomass-burning urban households in northeastern China. Environ Health Persp 116:907–914

    Article  Google Scholar 

  27. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  28. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  29. Nunes AA, Franca AS, Oliveira LS (2009) Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Bioresour Technol 100:1786–1792

    Article  CAS  Google Scholar 

  30. Karagöz S, Tay T, Ucar S, Erdem M (2008) Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour Technol 99:6214–6222

    Article  Google Scholar 

  31. Hu B, Wang K, Wu LH, Yu S-H, Antonietti M, Titirici M-M (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828

    Article  CAS  Google Scholar 

  32. Luque R, Menéndez JA, Arenillas A, Cot J (2012) Microwaveassisted pyrolysis of biomass feedstocks: the way forward? Energy Environ Sci 5:5481–5488

    Article  CAS  Google Scholar 

  33. Wang Y, Zhang L, Hou H, Xu W, Duan G, He S, Liu K, Jiang S (2021) Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci 56:173–200

    Article  CAS  Google Scholar 

  34. Chen Y, Zhu Y, Wang Z, Li Y, Wang L, Ding L, Gao X, Ma Y, Guo Y (2011) Application studies of activated carbon derived from rice husks produced by chemical-thermal process—a review. Adv Colloid Interfac 163:39–52

    Article  CAS  Google Scholar 

  35. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  36. Yin H, Lu B, Xu Y, Tang D, Mao XH, Xiao W, Wang D, Alshawabkeh AN (2014) Harvesting capacitive carbon by carbonization of waste biomass in molten salts. Environ Sci Technol 48:8101–8108

    Article  CAS  Google Scholar 

  37. Yin H, Mao XH, Tang D, Xiao W, Xing L, Zhu H, Wang D, Sadoway DR (2013) Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy Environ Sci 6:1538–1545

    Article  CAS  Google Scholar 

  38. Liu X, Antonietti M (2014) Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon 69:460–466

    Article  CAS  Google Scholar 

  39. Yang S, Zhang B, Ge C, Dong X, Liu X, Fang Y, Wang H, Li Z (2012) Close-packed mesoporous carbon polyhedrons derived from colloidal carbon microspheres for electrochemical energy storage applications. RSC Adv 2:10310–10315

    Article  CAS  Google Scholar 

  40. Liu X, Antonietti M (2013) Moderating black powder chemistry for the synthesis of doped and highly porous graphene nanoplatelets and their use in electrocatalysis. Adv Mater 25:6284–6290

    Article  CAS  Google Scholar 

  41. Dutta S, Bhaumik A, Wu KC-W (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592

    Article  CAS  Google Scholar 

  42. Cheng X, Yin H, Wang D (2018) Rearrangement of oxide scale on Ni–11Fe–10Cu alloy under anodic polarization in molten Na2CO3–K2CO3. Corros Sci 141:168–174

    Article  CAS  Google Scholar 

  43. Liu GJ, Shi YY, Wang L, Song YD, Gao SM, Liu D, Fan LQ (2020) Reduced graphene oxide/polypyrrole composite: an advanced electrode for high-performance symmetric/asymmetric supercapacitor. Carbon Lett 30:389–397

    Article  Google Scholar 

  44. Yang P, Mai W (2014) Flexible solid-state electrochemical supercapacitors. Nano Energy 8:274–290

    Article  CAS  Google Scholar 

  45. Lu B, Zhou J, Song Y, Wang H, Xiao W, Wang D (2016) Molten-salt treatment of waste biomass for preparation of carbon with enhanced capacitive properties and electrocatalytic activity towards oxygen reduction. Faraday Discuss 190:147–159

    Article  CAS  Google Scholar 

  46. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1:356–361

    Article  CAS  Google Scholar 

  47. Nemanich RJ, Solin SA (1979) First- and second-order Raman scattering from finite-size crystals of graphite. Phys Rev B 20:392–401

    Article  CAS  Google Scholar 

  48. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans R Soc A 362:2477–2512

    Article  CAS  Google Scholar 

  49. Pachfule P, Shinde D, Majumder M, Xu Q (2016) Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat Chem 8:718–724

    Article  CAS  Google Scholar 

  50. Yang J, Qiu K-Q (2009) Preparation of activated carbon by chemical activation under vacuum. Environ Sci Technol 43:3385–3390

    Article  CAS  Google Scholar 

  51. El-Hendawy A-NA (2005) Surface and adsorptive properties of carbons prepared from biomass. Appl Surf Sci 252:287–295

    Article  CAS  Google Scholar 

  52. Xiao P-W, Meng Q, Zhao L, Li J-J, Wei Z, Han B-H (2017) Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption. Mater Des 129:164–172

    Article  CAS  Google Scholar 

  53. Altuntaş DB, Nevruzoğlu V, Dokumacı M, Cam Ş (2020) Synthesis and characterization of activated carbon produced from waste human hair mass using chemical activation. Carbon Lett 30:307–313

    Article  Google Scholar 

  54. Tang D, Luo Y, Lei W, Xiang Q, Ren W, Song W, Chen K, Sun J (2018) Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications. Appl Surf Sci 462:862–871

    Article  CAS  Google Scholar 

  55. Lu B, Hu L, Yin H, Xiao W, Wang D (2016) One-step molten salt carbonization (MSC) of firwood biomass for capacitive carbon. RSC Adv 6:106485–106490

    Article  CAS  Google Scholar 

  56. Zhou J, Lian J, Hou L, Zhang J, Gou H, Xia M, Zhao YQ, Strobel TA, Tao L, Gao F (2015) Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat Commun 6:8503

    Article  CAS  Google Scholar 

  57. Tagaya T, Hatakeyama Y, Shiraishi S, Tsukada H, Mostazo-López MJ, Morallón E, Cazorla-Amorós D (2020) Nitrogen-doped seamless activated carbon electrode with excellent durability for electric double layer capacitor. J Electrochem Soc 167:060523

    Article  CAS  Google Scholar 

  58. Fan LZ, Qiao S, Song W, Wu M, He X, Qu X (2013) Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochim Acta 105:299–304

    Article  CAS  Google Scholar 

  59. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  60. Hao L, Li XL, Zhi LJ (2013) Carbonaceous electrode materials for supercapacitors. Adv Mater 25:3899–3904

    Article  CAS  Google Scholar 

  61. Hu Z, Srinivasan MP, Ni Y (2001) Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon 39:877–886

    Article  CAS  Google Scholar 

  62. Li Y, Shi H, Liang C, Yu K (2021) Turning waste into treasure: biomass carbon derived from sunflower seed husks used as anode for lithium-ion batteries. Ionics 27:1025–1039

    Article  CAS  Google Scholar 

  63. Li Y, Li C, Qi H, Yu K, Li X (2018) Formation mechanism and characterization of porous biomass carbon for excellent performance lithium-ion batteries. RSC Adv 8:12666–12671

    Article  CAS  Google Scholar 

  64. Yu K, Wang J, Wang X, Liang J, Liang C (2020) Sustainable application of biomass by-products: Corn straw-derived porous carbon nanospheres using as anode materials for lithium ion batteries. Mater Chem Phys 243:122644

    Article  CAS  Google Scholar 

  65. Carriazo D, Picó F, Gutiérrez MC, Rubio F, Rojoa JM, del Monte F (2010) Block-Copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes. J Mater Chem 20:773–780

    Article  CAS  Google Scholar 

  66. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  Google Scholar 

  67. Young C, Lin J, Wang J, Ding B, Zhang X, Alshehri SM, Ahamad T, Salunkhe RR, Hossain SA, Khan JH, Ide Y, Kim J, Henzie J, Wu KC, Kobayashi N, Yamauchi Y (2018) Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors. Chem-Eur J 24:6127–6132

    Article  CAS  Google Scholar 

  68. Zou X, Ji L, Hsu H-Y, Zheng K, Pang Z, Lu X (2018) Designed synthesis of SiC nanowire-derived carbon with dual-scale nanostructures for supercapacitor applications. J Mater Chem A 6:12724–12732

    Article  CAS  Google Scholar 

  69. Li C, He D, Huang Z-H, Wang M-X (2018) Hierarchical micro-/mesoporous carbon derived from rice husk by hydrothermal pre-treatment for high performance supercapacitor. J Electrochem Soc 165:A3334–A3341

    Article  CAS  Google Scholar 

  70. Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6:2497–2504

    Article  Google Scholar 

  71. Huang G, Geng Q, Xing B, Liu Y, Li Y, Liu Q, Jia J, Chen L, Zhang C (2020) Manganous nitrate -assisted potassium hydroxide activation of humic acid to prepare oxygen-rich hierarchical porous carbon as high-performance supercapacitor electrodes. J Power Sources 449:227506

    Article  CAS  Google Scholar 

  72. Yun YS, Park MH, Hong SJ, Lee ME, Park YW, Jin H-J (2015) Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl Mater Inter 7:3684–3690

    Article  CAS  Google Scholar 

  73. Chen W, Zhang H, Huang Y, Wang W (2010) A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J Mater Chem 20:4773–4775

    Article  CAS  Google Scholar 

  74. Zeng C, Guo P, Wu W (2004) Electrochemical impedance of two-phase Ni–Ti alloys during corrosion in eutectic (0.62Li, 0.38K)2CO3 at 650 °C. Electrochim Acta 49:2271–2277

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Key Program of the Scientific Research Foundation of the Education Bureau of Hubei Province, China (Grant No. D20181901), the Open Fund of Hubei Key Laboratory of Biological Resources Protection and Utilization (Grant No. PT012011) and the Doctoral Start-up Foundation of Hubei Minzu University (Grant No. MY2018B022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Cheng.

Ethics declarations

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Cheng, X. & Zhang, S. Hierarchically porous carbon derived from tobacco waste by one-step molten salt carbonization for supercapacitor. Carbon Lett. 32, 251–263 (2022). https://doi.org/10.1007/s42823-021-00271-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00271-0

Keywords

Navigation