Skip to main content
Log in

Effect of annealing temperature on the performance of dye-sensitized solar cell using nickel sulphide–reduced graphene oxide cathode

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, nickel sulphide (NiS)–reduced graphene oxide (rGO) (NiS–rGO) has been used as a cathode in dye-sensitized solar cell (DSSC). The cathode has been prepared via liquid phase deposition technique assisted with modified Hummer’s method and spin-coating technique. The effect of annealing temperature on the properties of NiS–rGO has been reported. The influence of temperature on performance of the device utilizing NiS–rGO cathode has also been investigated. The annealing temperature ranges from 320 to 400°C. The sample shows minor phase of NiS and rGO. The device using the cathode annealed at 380°C produced the best power conversion efficiency (η) of 0.50%. This champion device also yielded the highest Voc of 0.72 V. This is because this device owns the lowest sheet resistance (Rs) of 11.50 Ω per square. The photovoltaic result of this work signifies that NiS–rGO has the potential as a substitution for platinum as cathode for DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Roy-Mayhew J D, Bozym D J, Punckt C and Aksay I A 2010 ACS Nano 4 6203

    Article  CAS  Google Scholar 

  2. Zhang D W, Li X D, Li H B, Chen S, Sun Z, Yin X J et al 2011 Carbon 49 5382

    Article  CAS  Google Scholar 

  3. Wang H, Sun K, Tao F, Stacchiola D J and Hu Y H 2013 Angew. Chem. Int. Ed. 52 9210

    Article  CAS  Google Scholar 

  4. Kavan L, Liska P, Zakeeruddin S M and Grätzel M 2016 Electrochim. Acta 195 34

    Article  CAS  Google Scholar 

  5. Sun W, Peng T, Liu Y, Xu S, Yuan J, Guo S et al 2013 J. Mater. Chem. A 1 2762

    Article  CAS  Google Scholar 

  6. Yeh M H, Lin L Y, Sun C L, Leu Y A, Tsai J T, Yeh C Y et al 2014 J. Phys. Chem. C 118 16626

    Article  CAS  Google Scholar 

  7. Yang B, Zuo X, Chen P, Zhou L, Yang X, Zhang H et al 2015 ACS Appl. Mater. Interfaces 7 137

    Article  CAS  Google Scholar 

  8. Pang Z, Wei A, Zhao Y, Liu J, Tao L, Xiao Y et al 2018 J. Mater. Sci. 53 2748

    Article  CAS  Google Scholar 

  9. Tsai C H, Shih C J, Chou Y R, Chi W F, Huang W C and Yu Y H 2018 Organ. Electron. 52 51

    Article  CAS  Google Scholar 

  10. Dao V D, Hoa N D, Vu N H, Quang D V, Hieu N V, Dung T T N et al 2019 Sol. Energy 191 420

    Article  CAS  Google Scholar 

  11. Dao V D, Larina L L, Lee J K, Jung K D, Huy B T and Choi H S 2015 Carbon 81 710

    Article  CAS  Google Scholar 

  12. Ghasemi S, Hosseini S R and Banhangi M M 2019 J. Electroanal. Chem. 833 242

    Article  CAS  Google Scholar 

  13. Omelianovych O, Larina L L, Oh H J, Park E, Dao V D and Choi H S 2020 Sol. Energy 201 819

    Article  CAS  Google Scholar 

  14. Xue Y, Liu J, Chen H, Wang R, Li D, Qu J et al 2012 Angew. Chem. Int. Ed. 51 12124

    Article  CAS  Google Scholar 

  15. Ju M J, Kim J C, Choi H J, Choi I T, Kim S G, Lim K et al 2013 ACS Nano 6 5243

    Article  Google Scholar 

  16. Wang Z, Li P, Chen Y, He J, Liu J, Zhang W et al 2014 J. Power Sources 263 246

    Article  CAS  Google Scholar 

  17. Rahman M Y A, Sulaiman A S and Umar A A 2018 J. New Mater. Electrochem. Syst. 21 113

    Article  Google Scholar 

  18. Mustaffa N, Rahman M Y A and Umar A A 2018 Ionics 24 3665

    Article  CAS  Google Scholar 

  19. Mustaffa N, Rahman M Y A and Umar A A 2020 Arab. J. Chem. 13 3383

    Article  CAS  Google Scholar 

  20. Umar M I A, Yap C C, Awang R, Umar A A, Salleh M M and Yahaya M 2013 Mater. Lett. 106 200

    Article  Google Scholar 

  21. Salleh S A, Rahman M Y A, Yumni Z and Aziz T H T 2020 Arab. J. Chem. 13 5191

    Article  CAS  Google Scholar 

  22. Rahman M Y A, Sulaiman A S, Umar A A and Salleh M M 2017 J. Mater. Sci.: Mater. Electron. 28 1674

    CAS  Google Scholar 

  23. Roza L, Umar A A, Rahman M Y A and Salleh M M 2012 Adv. Mater. Res. 364 393

    Article  CAS  Google Scholar 

  24. Roksana M, Drewniak S, Pustelny T, Chrubasik M and Gryglewicz G 2018 Materials 11 1050

    Article  Google Scholar 

  25. Rahman M Y A, Sulaiman A S and Umar A A 2018 Int. J. Electrochem. Sci. 13 5620

    Article  CAS  Google Scholar 

  26. Liu H W, Liang S, Wu T J, Chang H, Kao P K, Hsu C C et al 2014 ACS Appl. Mater. Interfaces 6 15105

    Article  CAS  Google Scholar 

  27. Nagavolu C, Susmitha K, Raghavender M, Giribabu L, Rao K B S, Smith C T G et al 2016 Sol. Energy 137 143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Higher Education, Malaysia via Universiti Kebangsaan Malaysia (UKM) under research Grant FRGS/1/2019/STG02/UKM/02/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Y A Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salleh, S.A., Rahman, M.Y.A. & Aziz, T.H.T. Effect of annealing temperature on the performance of dye-sensitized solar cell using nickel sulphide–reduced graphene oxide cathode. Bull Mater Sci 44, 224 (2021). https://doi.org/10.1007/s12034-021-02514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02514-2

Keywords

Navigation