Skip to main content
Log in

Effect of Epidermal Growth Factor on the Colony-formation Ability of Porcine Spermatogonial Germ Cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Spermatogonial stem cells (SSCs) are crucial for maintaining spermatogenesis, studying germ line stem cell biology, and producing transgenic animals. Growth factors, including leukemia inhibitory factor (LIF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and glial cell line-derived neurotrophic factor (GDNF), are essential for in vitro culture of SSCs as well as their self-renewal and maintenance. In this study, we investigated the effects of these growth factors on porcine spermatogonial germ cell (pSGC) colony formation. We determined round alkaline phosphatase (AP)-positive pSGC colonies in the presence and absence of growth factors after 7 days of pSGC culture. EGF was found to be essential to support the formation of AP-positive pSGC colonies. The expression of epidermal growth factor receptor (EGFR) and Erb-B2 receptor tyrosine kinase 2 (ERBB2) was also altered in cultured pSGCs compared to that in feeder cells. We verified the effect of EGF signaling on pSGC colony formation using AG1478 as an EGFR inhibitor and AG879 as an ERBB2 inhibitor. pSGC colonies were observed in low dose AG1478-treated groups with EGF, whereas a high dose of AG1478 suppressed pSGC colony formation. AP-positive colonies were also observed in all AG879-treated groups. Taken together, EGFR and EGF signaling play a critical role in the initiation of colony formation of pSGCs. Our study provides insights into the mechanisms of EGF-mediated colony formation by SGCs derived from porcine testes, and will aid the development of transplantation techniques for the production of transgenic offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohbo, K., S. Yoshida, M. Ohmura, O. Ohneda, T. Ogawa, H. Tsuchiya, T. Kuwana, J. Kehler, K. Abe, H. Schöler, and T. Suda (2003) Identification and characterization of stem cells in prepubertal spermatogenesis in mice. Dev. Biol. 258: 209–225.

    Article  CAS  PubMed  Google Scholar 

  2. Shinohara, T., K. E. Orwig, M. R. Avarbock, and R. L. Brinster (2000) Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc. Natl. Acad. Sci. USA. 97: 8346–8351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. de Rooij, D. G. (2017) The nature and dynamics of spermatogonial stem cells. Development. 144: 3022–3030.

    Article  CAS  PubMed  Google Scholar 

  4. Kanatsu-Shinohara, M., N. Ogonuki, K. Inoue, H. Miki, A. Ogura, S. Toyokuni, and T. Shinohara (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69: 612–616.

    Article  CAS  PubMed  Google Scholar 

  5. Kanatsu-Shinohara, M., H. Miki, K. Inoue, N. Ogonuki, S. Toyokuni, A. Ogura, and T. Shinohara (2005) Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol. Reprod. 72: 985–991.

    Article  CAS  PubMed  Google Scholar 

  6. Kubota, H., M. R. Avarbock, and R. L. Brinster (2004) Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 71: 722–731.

    Article  CAS  PubMed  Google Scholar 

  7. Brinster, R. L. and J. W. Zimmermann (1994) Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA. 91: 11298–11302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Navid, S., T. Rastegar, M. Baazm, R. Alizadeh, A. Talebi, K. Gholami, S. Khosravi-Farsani, M. Koruji, and M. Abbasi (2017) In vitro effects of melatonin on colonization of neonate mouse spermatogonial stem cells. Syst. Biol. Reprod. Med. 63: 370–381.

    Article  CAS  PubMed  Google Scholar 

  9. Dirami, G., N. Ravindranath, V. Pursel, and M. Dym (1999) Effects of stem cell factor and granulocyte macrophage-colony stimulating factor on survival of porcine type A spermatogonia cultured in KSOM. Biol. Reprod. 61: 225–230.

    Article  CAS  PubMed  Google Scholar 

  10. Luo, J., S. Megee, R. Rathi, and I. Dobrinski (2006) Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol. Reprod. Dev. 73: 1531–1540.

    Article  CAS  PubMed  Google Scholar 

  11. Kuijk, E. W., B. Colenbrander, and B. A. J. Roelen (2009) The effects of growth factors on in vitro-cultured porcine testicular cells. Reproduction. 138: 721–731.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, W. Y., H. J. Park, R. Lee, K. H. Lee, Y. H. Kim, B. Y. Ryu, N. H. Kim, J. H. Kim, J. H. Kim, S. H. Moon, J. K. Park, H. J. Chung, D. H. Kim, and H. Song (2013) Establishment and in vitro culture of porcine spermatogonial germ cells in low temperature culture conditions. Stem Cell Res. 11: 1234–1249.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, W. Y., J. T. Do, C. Park, J. H. Kim, H. J. Chung, K. W. Kim, C. H. Gil, N. H. Kim, and H. Song (2016) Identification of putative biomarkers for the early stage of porcine spermatogonial stem cells using next-generation sequencing. PLoS One. 11: e0147298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Moghal, N. and P. W. Sternberg (1999) Multiple positive and negative regulators of signaling by the EGF-receptor. Curr. Opin. Cell. Biol. 11: 190–196.

    Article  CAS  PubMed  Google Scholar 

  15. Wells, A. (1999) EGF receptor. Int. J. Biochem. Cell. Biol. 31: 637–643.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, A., C. Flores, T. Kinkead, A. A. Carboni, M. Menon, and L. Seethalakshmi (1994) Effects of sialoadenectomy and epidermal growth factor on testicular function of sexually mature male mice. J. Urol. 152: 554–561.

    Article  CAS  PubMed  Google Scholar 

  17. Suarez-Quian, C. A., B. O. Oke, and B. Radhakrishnan (1994) Relationship between submandibular gland epidermal growth factor and spermatogenesis in C3H mice. Tissue Cell. 26: 285–298.

    Article  CAS  PubMed  Google Scholar 

  18. Bartlett, J. M., J. Spiteri-Grech, and E. Nieschlag (1990) Regulation of insulin-like growth factor I and stage-specific levels of epidermal growth factor in stage synchronized rat testes. Endocrinology. 127: 747–758.

    Article  CAS  PubMed  Google Scholar 

  19. Wong, R. W., R. W. Kwan, P. H. Mak, K. K. Mak, M. H. Sham, and S. Y. Chan (2000) Overexpression of epidermal growth factor induced hypospermatogenesis in transgenic mice. J. Biol. Chem. 275: 18297–18301.

    Article  CAS  PubMed  Google Scholar 

  20. Yan, Y. C., Y. P. Sun, and M. L. Zhang (1998) Testis epidermal growth factor and spermatogenesis. Arch. Androl. 40: 133–146.

    Article  CAS  PubMed  Google Scholar 

  21. Shin, I., H. J. Kim, W. H. Nah, H. J. Park, M. C. Gye, and H. Y. Park (2011) Expression of activated HER2 in human testes. Fertil. Steril. 95: 2725–2728.

    Article  CAS  PubMed  Google Scholar 

  22. Abé. K., K. Eto, and S. Abé (2008) Epidermal growth factor mediates spermatogonial proliferation in newt testis. Reprod. Biol. Endocrinol. 6: 7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fisher, D. A. and J. Lakshmanan (1990) Metabolism and effects of epidermal growth factor and related growth factors in mammals. Endocr. Rev. 11: 418–442.

    Article  CAS  PubMed  Google Scholar 

  24. Brinster, R. L. (2002) Germline stem cell transplantation and transgenesis. Science. 296: 2174–2176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Phillips, B. T., K. Gassei, and K. E. Orwig (2010) Spermatogonial stem cell regulation and spermatogenesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365: 1663–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guan, K., K. Nayernia, L. S. Maier, S. Wagner, R. Dressel, J. H. Lee, J. Nolte, F. Wolf, M. Li, W. Engel, and G. Hasenfuss (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 440: 1199–1203.

    Article  CAS  PubMed  Google Scholar 

  27. Tadokoro, Y., K. Yomogida, H. Ohta, A. Tohda, and Y. Nishimune (2002) Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech. Dev. 113: 29–39.

    Article  CAS  PubMed  Google Scholar 

  28. Kubota, H., M. R. Avarbock, and R. L. Brinster (2003) Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc. Natl. Acad. Sci. USA. 100: 6487–6492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weiler, E., F. Khalil-Manesh, and H. C. Gonick (1990) Effects of lead and a low-molecular-weight endogenous plasma inhibitor on the kinetics of sodium-potassium-activated adenosine triphosphatase and potassium-activated p-nitrophenylphosphatase. Clin. Sci. (Lond). 79: 185–192.

    Article  CAS  PubMed  Google Scholar 

  30. Park, H. J., R. Lee, W. Y. Lee, J. H. Kim, J. T. Do, C. Park, and H. Song (2017) Stage-specific expression of Sal-like protein 4 in boar testicular germ cells. Theriogenology. 101: 44–52.

    Article  CAS  PubMed  Google Scholar 

  31. Lee, K. H., R. Lee, W. Y. Lee, D. H. Kim, H. J. Chung, J. H. Kim, N. H. Kim, S. H. Choi, J. H. Kim, and H. Song (2014) Identification and in vitro derivation of spermatogonia in beagle testis. PLoS One. 9: e109963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Aponte, P. M., T. Soda, K. J. Teerds, S. C. Mizrak, H. J. G. van de Kant, and D. G. de Rooij (2008) Propagation of bovine spermatogonial stem cells in vitro. Reproduction. 136: 543–557.

    Article  CAS  PubMed  Google Scholar 

  33. Bost, F., R. McKay, M. Bost, O. Potapova, N. M. Dean, and D. Mercola (1999) The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol. Cell. Biol. 19: 1938–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, K. S., N. J. Fustino, A. A. Shukla, E. K. Stroup, A. Budhipramono, C. Ateek, S. H. Stuart, K. Yamaguchi, P. Kapur, A. L. Frazier, L. Lum, L. H. J. Looijenga, T. W. Laetsch, D. Rakheja, and J. F. Amatruda (2018) EGF receptor and mTORC1 are novel therapeutic targets in nonseminomatous germ cell tumors. Mol. Cancer. Ther. 17: 1079–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ge, C., M. Yu, J. N. Petitte, and C. Zhang (2009) Epidermal growth factor-induced proliferation of chicken primordial germ cells: involvement of calcium/protein kinase C and NFKB1. Biol. Reprod. 80: 528–536.

    Article  CAS  PubMed  Google Scholar 

  36. Radhakrishnan, B., B. O. Oke, V. Papadopoulos, R. P. DiAugustine, and C. A. Suarez-Quian (1992) Characterization of epidermal growth factor in mouse testis. Endocrinology. 131: 3091–3099.

    Article  CAS  PubMed  Google Scholar 

  37. Sordoillet, C., M. A. Chauvin, E. de Peretti, A. M. Morera, and M. Benahmed (1991) Epidermal growth factor directly stimulates steroidogenesis in primary cultures of porcine Leydig cells: actions and sites of action. Endocrinology. 128: 2160–2168.

    Article  CAS  PubMed  Google Scholar 

  38. Citri, A. and Y. Yarden (2006) EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell. Biol. 7: 505–516.

    Article  CAS  PubMed  Google Scholar 

  39. Sooro, M. A., N. Zhang, and P. Zhang (2018) Targeting EGFR-mediated autophagy as a potential strategy for cancer therapy. Int. J. Cancer. 143: 2116–2125.

    Article  CAS  PubMed  Google Scholar 

  40. Gazdar, A. F. and J. D. Minna (2008) Deregulated EGFR signaling during lung cancer progression: mutations, amplicons, and autocrine loops. Cancer. Prev. Res (Phila). 1: 156–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sabra, A., A. A. Ziaee, S. N. Ostad, K. Alimoghadam, and M. H. Ghahremani (2011) Crosstalk of EGF-directed MAPK signalling pathways and its potential role on EGF-induced cell proliferation and COX-2 expression in human mesenchymal stem cells. Cell. Biochem. Funct. 29: 64–70.

    Article  CAS  Google Scholar 

  42. Yu, M., Y. Wei, K. Xu, S. Liu, L. Ma, Y. Pei, Y. Hu, Z. Liu, X. Zhang, B. Wang, Y. Mu, and K. Li (2019) EGFR deficiency leads to impaired self-renewal and pluripotency of mouse embryonic stem cells. Peer. J. 7: e6314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Binsila, B. K., S. Selvaraju, S. K. Ghosh, L. Ramya, A. Arangasamy, R. Ranjithkumaran, and R. Bhatta (2020) EGF, GDNF, and IGF-1 influence the proliferation and stemness of ovine spermatogonial stem cells in vitro. J. Assist. Reprod. Genet. 37: 2615–2630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jones, R. B., A. Gordus, J. A. Krall, and G. MacBeath (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature. 439: 168–174.

    Article  CAS  PubMed  Google Scholar 

  45. Kedrin, D., J. Wyckoff, P. J. Boimel, S. J. Coniglio, N. E. Hynes, C. L. Arteaga, and J. E. Segall (2009) ERBB1 and ERBB2 have distinct functions in tumor cell invasion and intravasation. Clin. Cancer. Res. 15: 3733–3739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iwamoto, R., N. Mine, H. Mizushima, and E. Mekada (2017) ErbB1 and ErbB4 generate opposing signals regulating mesenchymal cell proliferation during valvulogenesis. J. Cell. Sci. 130: 1321–1332.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was supported by Konkuk University Researcher Fund in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuk Song.

Ethics declarations

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, R., Park, HJ., Lee, WY. et al. Effect of Epidermal Growth Factor on the Colony-formation Ability of Porcine Spermatogonial Germ Cells. Biotechnol Bioproc E 26, 677–687 (2021). https://doi.org/10.1007/s12257-020-0372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0372-3

Keywords

Navigation