Skip to main content
Log in

The impacts of different anticoagulants and long-term frozen storage on multiple metal concentrations in peripheral blood: a comparative study

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

It is important but remains unclear whether ethylenediaminetetraacetic acid (EDTA) and sodium heparin anticoagulants have different impacts on the levels of various metals in peripheral blood after long-term frozen storage. The concentrations of 22 metals (Al, As, Ba, Ca, Cd, Cr, Co, Cu, Mn, Mg, Mo, Ni, Fe, Pb, Rb, Se, Sn, Sb, Sr, Ti, V, Zn) in whole blood, blood cells and plasma from 22 healthy participants were determined twice, 18 months apart, using inductively coupled plasma mass spectrometry (ICP-MS). The mean percentage error (MPE) and intraclass correlation coefficient (ICC) were calculated to evaluate the impact of the anticoagulants and long-term frozen storage on metal concentrations, respectively. The concentrations of Sb and Ba in whole blood, blood cells and plasma were significantly altered by EDTA and sodium heparin at two measurement timepoints (P < 0.05 and MPE > 80%). In EDTA tubes, the Ti and Ni concentrations in blood cells were changed significantly; and in heparin tubes, the concentrations of Ni and Mo in blood cells and Sb in plasma were also altered (P < 0.05 and MPE > 80%). The ICCs of 11 metals in whole blood, 15 metals in blood cells and 16 metals in plasma remained unchanged in EDTA tubes, and 16 metals in whole blood, 15 metals in blood cells and 17 metals in plasma remained unchanged in heparin tubes (ICC > 0.40). Our study suggested the use of EDTA tubes to determine Sb concentrations in peripheral blood and heparin tubes to determine Ba concentrations. Additionally, heparin tubes may be more suited for determining multiple metal concentrations in whole blood, whereas for blood cells and plasma either EDTA or heparin tubes could be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdullah NAF, Ang LS (2018) Binding sites of deprotonated citric acid and ethylenediaminetetraacetic acid in the chelation with Ba2+, Y3+, and Zr4+ and their electronic properties: a density functional theory study. Acta Chim Slov 65:231–238

    Article  CAS  PubMed  Google Scholar 

  • Arnaud F, Yang H, McGann LE (1996) Freezing injury of granulocytes during slow cooling: role of the granules. Cryobiology 33:391–403

    Article  CAS  PubMed  Google Scholar 

  • Baird GS (2011) Ionized calcium. Clin Chim Acta 412:696–701

    Article  CAS  PubMed  Google Scholar 

  • Barnham KJ, Bush AI (2014) Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 43:6727–6749

    Article  CAS  PubMed  Google Scholar 

  • Barroso I, Farinha R, Guimaraes JT (2018) Proper zinc evaluation in clinical practice: effect of sample type and it’s stability. Clin Biochem 59:93–95

    Article  CAS  PubMed  Google Scholar 

  • Barrow RT, Parker ET, Krishnaswamy S, Lollar P (1994) Inhibition by heparin of the human blood coagulation intrinsic pathway factor X activator. J Biol Chem 269:26796–26800

    Article  CAS  PubMed  Google Scholar 

  • Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L (2013) Calcium in red blood cells-a perilous balance. Int J Mol Sci 14:9848–9872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowen RA, Remaley AT (2014) Interferences from blood collection tube components on clinical chemistry assays. Biochem Med (Zagreb) 24:31–44

    Article  CAS  Google Scholar 

  • Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6:e04691

    Article  PubMed  PubMed Central  Google Scholar 

  • Butterworth RF (2010) Metal toxicity, liver disease and neurodegeneration. Neurotox Res 18:100–105

    Article  PubMed  Google Scholar 

  • Cadamuro J, Felder TK, Oberkofler H, Mrazek C, Wiedemann H, Haschke-Becher E (2015) Relevance of EDTA carryover during blood collection. Clin Chem Lab Med 53:1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Carraro P, Plebani M (2007) Errors in a stat laboratory: types and frequencies 10 years later. Clin Chem 53:1338–1342

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Bornhorst J, Aschner M (2018) Manganese metabolism in humans. Front Biosci 23:1655–1679

    Article  CAS  Google Scholar 

  • Chowdhury R et al (2018) Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 362:k3310

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelis R et al (1995) Sample collection guidelines for trace elements in blood and urine (technical report). Pure Appl Chem 67:1575

    Article  Google Scholar 

  • Domingo-Relloso A et al (2019) The association of urine metals and metal mixtures with cardiovascular incidence in an adult population from Spain: the Hortega Follow-Up Study. Int J Epidemiol 48:1839–1849

    Article  PubMed  PubMed Central  Google Scholar 

  • Emons H, de Cremer K, Brereton P, Macarthur R, Crews HM, Dabek-Zlotorzynska E, Keppel-Jones K (2003) Sampling: collection, storage. In: Cornelis R, Caruso J, Crews H, Heumann K (eds) Handbook of elemental speciation: techniques and methodology. Wiley, Chichester, pp 7–72

    Chapter  Google Scholar 

  • Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W (2019) Metal drugs and the anticancer immune response. Chem Rev 119:1519–1624

    Article  CAS  PubMed  Google Scholar 

  • Frank EL, Hughes MP, Bankson DD, Roberts WL (2001) Effects of anticoagulants and contemporary blood collection containers on aluminum, copper, and zinc results. Clin Chem 47:1109–1112

    Article  CAS  PubMed  Google Scholar 

  • Ge X et al (2020) Plasma metals and serum bilirubin levels in workers from manganese-exposed workers healthy cohort (MEWHC). Environ Pollut 258:113683

    Article  CAS  PubMed  Google Scholar 

  • Gell DA (2018) Structure and function of haemoglobins. Blood Cells Mol Dis 70:13–42

    Article  CAS  PubMed  Google Scholar 

  • Gil F, Hernandez AF (2015) Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samples. Food Chem Toxicol 80:287–297

    Article  CAS  PubMed  Google Scholar 

  • Glasdam SM, Glasdam S, Peters GH (2016) The Importance of magnesium in the human body: a systematic literature review. Adv Clin Chem 73:169–193

    Article  CAS  PubMed  Google Scholar 

  • Heitland P, Koster HD (2006) Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP-MS. J Trace Elem Med Biol 20:253–262

    Article  CAS  PubMed  Google Scholar 

  • Hernández AF, Gil F, Tsatsakis AM (2014) Biomarkers of chemical mixture toxicity. Biomarkers in toxicology. Elsevier, Amsterdam, pp 655–669

    Chapter  Google Scholar 

  • Hofer AM, Lefkimmiatis K (2007) Extracellular calcium and cAMP: second messengers as “third messengers”? Physiology (Bethesda) 22:320–327

    CAS  Google Scholar 

  • Hou Q et al (2019) Associations between multiple serum metal exposures and low birth weight infants in Chinese pregnant women: a nested case-control study. Chemosphere 231:225–232

    Article  CAS  PubMed  Google Scholar 

  • Jansen EH, Beekhof PK, Schenk E (2013) Long-term stability of biomarkers of the iron status in human serum and plasma. Biomarkers 18:365–368

    Article  CAS  PubMed  Google Scholar 

  • Korolnek T, Hamza I (2015) Macrophages and iron trafficking at the birth and death of red cells. Blood 125:2893–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lener J, Bíbr B (1984) Effects of molybdenum on the organism (a review). J Hyg Epidemiol Microbiol Immunol 28:405–419

    CAS  PubMed  Google Scholar 

  • Liu T, Zhang M, Guallar E, Wang G, Hong X, Wang X, Mueller NT (2019) Trace minerals, heavy metals, and preeclampsia: findings from the Boston birth cohort. J Am Heart Assoc 8:e012436

    Article  PubMed  PubMed Central  Google Scholar 

  • Long T et al (2019) Plasma metals and cardiovascular disease in patients with type 2 diabetes. Environ Int 129:497–506

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Ahmed S, Harari F, Vahter M (2015) Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma. J Trace Elem Med Biol 29:249–254

    Article  CAS  PubMed  Google Scholar 

  • Lukasik-Glebocka M, Sommerfeld K, Hanc A, Grzegorowski A, Baralkiewicz D, Gaca M, Zielinska-Psuja B (2014) Barium determination in gastric contents, blood and urine by inductively coupled plasma mass spectrometry in the case of oral barium chloride poisoning. J Anal Toxicol 38:380–382

    Article  CAS  PubMed  Google Scholar 

  • Luo Q et al (2020) Association of blood metal exposure with testosterone and hemoglobin: a cross-sectional study in Hangzhou Birth Cohort Study. Environ Int 136:105451

    Article  CAS  PubMed  Google Scholar 

  • Malhotra A, Dhawan DK (2008) Zinc improves antioxidative enzymes in red blood cells and hematology in lithium-treated rats. Nutr Res 28:43–50

    Article  CAS  PubMed  Google Scholar 

  • Matyskin AV, Hansson NL, Brown PL, Ekberg C (2017) Barium and radium complexation with ethylenediaminetetraacetic acid in aqueous alkaline sodium chloride media. J Solut Chem 46:1951–1969

    Article  CAS  Google Scholar 

  • McGann LE, Yang HY, Walterson M (1988) Manifestations of cell damage after freezing and thawing. Cryobiology 25:178–185

    Article  CAS  PubMed  Google Scholar 

  • Miseta A, Bogner P, Berényi E, Kellermayer M, Galambos C, Wheatley DN, Cameron IL (1993) Relationship between cellular ATP, potassium, sodium and magnesium concentrations in mammalian and avian erythrocytes. Biochim Biophys Acta 1175:133–139

    Article  CAS  PubMed  Google Scholar 

  • Nardid O, Dyubko T, Repina S (1997) A comparative study of the effect of freeze-thawing on peripheral and integral membrane proteins. Cryobiology 34:107–113

    Article  CAS  PubMed  Google Scholar 

  • Orr SE, Bridges CC (2017) Chronic kidney disease and exposure to nephrotoxic metals. Int J Mol Sci 18(5):1039

    Article  PubMed Central  CAS  Google Scholar 

  • Pernerstorfer T, Jilma B, Eichler H-G, Aull S, Handler S, Speiser W (1999) Heparin lowers plasma levels of activated factor VII. Br J Haematol 105:1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Perry JN, Jasim A, Hojat A, Yong WH (2019) Procurement, storage, and use of blood in biobanks. Methods Mol Biol 1897:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pixley RA, Schapira M, Colman RW (1985) Effect of heparin on the inactivation rate of human activated factor XII by antithrombin III. Blood 66:198–203

    Article  CAS  PubMed  Google Scholar 

  • Rezende VB, Amaral JH, Gerlach RF, Barbosa F Jr, Tanus-Santos JE (2010) Should we measure serum or plasma lead concentrations? J Trace Elem Med Biol 24:147–151

    Article  CAS  PubMed  Google Scholar 

  • Richard C, Verdier F (2020) Transferrin receptors in erythropoiesis. Int J Mol Sci 21(24):9713

    Article  CAS  PubMed Central  Google Scholar 

  • Rosner B (2000) Fundamentals of biostatistics, 5th edn. Duxbury Thomson Learning, Pacific Grove, CA

  • Shabihkhani M et al (2014) The procurement, storage, and quality assurance of frozen blood and tissue biospecimens in pathology, biorepository, and biobank settings. Clin Biochem 47:258–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons TJ (1986) Passive transport and binding of lead by human red blood cells. J Physiol 378:267–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons TJ (1986) The role of anion transport in the passive movement of lead across the human red cell membrane. J Physiol 378:287–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sodango TH, Li X, Sha J, Bao Z (2018) Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: impacts and mitigation approaches. J Health Pollut 8:53–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommer YL, Ward CD, Georgi JC, Cheng PY, Jones RL (2020) Importance of preanalytical factors in measuring Cr and Co levels in human whole blood: contamination control, proper sample collection, and long-term storage stability. J Anal Toxicol 45(3):297–307

    Article  CAS  Google Scholar 

  • Subramanian KS (1995) Storage and preservation of blood and urine for trace element analysis. Biol Trace Elem Res 49:187

    Article  CAS  PubMed  Google Scholar 

  • Tanvir EM, Whitfield KM, Ng JC, Shaw PN (2020) Development and validation of an ICP-MS method and its application to determine multiple trace elements in small volumes of whole blood and plasma. J Anal Toxicol. https://doi.org/10.1093/jat/bkaa033

    Article  Google Scholar 

  • Tevis DS et al (2018) Assessing the stability of Cd, Mn, Pb, Se, and total Hg in whole human blood by ICP-DRC-MS as a function of temperature and time. Clin Chim Acta 485:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinoco AD, Eames EV, Valentine AM (2008) Reconsideration of serum Ti(IV) transport: albumin and transferrin trafficking of Ti(IV) and its complexes. J Am Chem Soc 130:2262–2270

    Article  CAS  PubMed  Google Scholar 

  • Tinoco AD et al (2016) Unusual synergism of transferrin and citrate in the regulation of Ti(IV) speciation, transport, and toxicity. J Am Chem Soc 138:5659–5665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Song Y, Li J, Wang C, Li F (2011) Structure and metal ion binding of the first transmembrane domain of DMT1. Biochim Biophys Acta 1808:1639–1644

    Article  CAS  PubMed  Google Scholar 

  • Waters RS, Bryden NA, Patterson KY, Veillon C, Anderson RA (2001) EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc. Biol Trace Elem Res 83:207–221

    Article  CAS  PubMed  Google Scholar 

  • Wyman AE, Hines SE (2018) Update on metal-induced occupational lung disease. Curr Opin Allergy Clin Immunol 18:73–79

    Article  CAS  PubMed  Google Scholar 

  • Yang T et al (2006) Stability of blood lead levels in stored specimens: effects of storage time and temperature. J Med Sci 26:211–214

    Google Scholar 

  • Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y et al (2017) Plasma metal concentrations and incident coronary heart disease in Chinese adults: the Dongfeng-Tongji cohort. Environ Health Perspect 125:107007

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Abdel-Razek T, Sun MF, Gailani D (1998) Characterization of a heparin binding site on the heavy chain of factor XI. J Biol Chem 273:31153–31159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Number 81860573 and 82073504] and the Guangxi Natural Science Fund for Innovation Research Team [Grant Number 2017GXNSFGA198003 and 2019GXNSFGA245002]. We are extremely grateful to all the participants who volunteered to take part in this study and all members of the research team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Yang.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10534_2021_336_MOESM1_ESM.eps

Supplementary file1 Differences in metal concentrations in whole blood, blood cells and plasma at two measurement timepoints in K2EDTA and heparin: 1st = first time of metal measurement in May 2019; 2nd = second time of metal measurement in October 2020; MPE = mean percentage error. Statistical significance was considered at P < 0.05 and MPE > 80% (EPS 2856 kb)

10534_2021_336_MOESM2_ESM.eps

Supplementary file2 Variations in metal concentrations in whole blood at two measurement timepoints: 1st = first time of metal measurements in May 2019; 2nd = second time of metal measurements in October 2020; MPE = mean percentage error; EDTA and heparin are presented as K2EDTA and sodium heparin, respectively. Each graph represents an individual metal. The violins and boxes in each graph represent the metal concentrations in each measurement. Statistical significance was considered at P < 0.05 and MPE > 80% (EPS 9540 kb)

10534_2021_336_MOESM3_ESM.eps

Supplementary file3 Variations in metal concentrations in blood cells at two measurement timepoints: 1st = first time of metal measurements in May 2019; 2nd = second time of metal measurements in October 2020; MPE = mean percentage error; EDTA and heparin are presented as K2EDTA and sodium heparin, respectively. Each graph represents an individual metal. The violins and boxes in each graph represent the metal concentrations in each measurement. Statistical significance was considered at P < 0.05 and MPE > 80% (EPS 9160 kb)

10534_2021_336_MOESM4_ESM.eps

Supplementary file4 Variations in metal concentrations in plasma at two measurement timepoints: 1st = first time of metal measurements in May 2019; 2nd = second time of metal measurements in October 2020; MPE = mean percentage error; EDTA and heparin are presented as K2EDTA and sodium heparin, respectively. Each graph represents an individual metal. The violins and boxes in each graph represent the metal concentrations in each measurement. Statistical significance was considered at P < 0.05 and MPE > 80% (EPS 9656 kb)

Supplementary file5 (XLSX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Ge, X., Li, L. et al. The impacts of different anticoagulants and long-term frozen storage on multiple metal concentrations in peripheral blood: a comparative study. Biometals 34, 1191–1205 (2021). https://doi.org/10.1007/s10534-021-00336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-021-00336-7

Keywords

Navigation