Skip to main content
Log in

Sections of Hamiltonian Systems

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

A section of a Hamiltonian system is a hypersurface in the phase space of the system, usually representing a set of one-sided constraints (e. g., a boundary, an obstacle or a set of admissible states). In this paper we give local classification results for all typical singularities of sections of regular (non-singular) Hamiltonian systems, a problem equivalent to the classification of typical singularities of Hamiltonian systems with one-sided constraints. In particular, we give a complete list of exact normal forms with functional invariants, and we show how these are related/obtained by the symplectic classification of mappings with prescribed (Whitney-type) singularities, naturally defined on the reduced phase space of the Hamiltonian system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Berlin: Springer, 2006.

    Book  Google Scholar 

  2. Arnol’d, V. I., Gusein-Zade, S. M., and Varchenko, A. N., Singularities of Differentiable Maps: Vol. 1. Classification of Critical Points, Caustics and Wave Fronts, New York: Birkhäuser, 2012.

    Book  Google Scholar 

  3. Arnol’d, V. I., Lagrangian Manifolds with Singularities, Asymptotic Rays, and the Open Swallowtail, Funct. Anal. Appl., 1981, vol. 15, no. 4, pp. 235–246; see also: Funktsional. Anal. i Prilozhen., 1981, vol. 15, no. 4, pp. 1-14.

    Article  Google Scholar 

  4. Arnol’d, V. I., Singularities of Systems of Rays, Russian Math. Surveys, 1983, vol. 38, no. 2, pp. 87–176; see also: Uspekhi Mat. Nauk, 1983, vol. 38, no. 2, pp. 77-147.

    Article  Google Scholar 

  5. Arnol’d, V. I., Singularities in the Calculus of Variations, J. Soviet Math., 1984, vol. 27, no. 3, pp. 2679–2713; see also: Itogi Nauki Tekh. Ser. Obshch. Mekh., 1983, vol. 22, no. , pp. 3-55.

    Article  Google Scholar 

  6. Arnol’d, V. I. and Givental’, A. B., Symplectic Geometry, in Dynamical Systems: Vol. 4. Symplectic Geometry and Its Applications, V. I. Arnold, S. P. Novikov (Eds.), Encyclopaedia Math. Sci., Berlin: Springer, 2001, pp. 1–138.

    Chapter  Google Scholar 

  7. Arnol’d, V. I., Singularities of Caustics and Wave Fronts, Dordrecht: Kluwer, 1990.

    Book  Google Scholar 

  8. Arnol’d, V. I., Critical Points of Functions on a Manifold with Boundary, the Simple Lie Groups \(B_{k}\), \(C_{k}\) and \(F_{4}\) and Singularities of Evolutes, Russian Math. Surveys, 1978, vol. 33, no. 5, pp. 99–116; see also: Uspekhi Mat. Nauk, 1978, vol. 33, no. 5(203), pp. 91-105.

    Article  Google Scholar 

  9. Arnol’d, V. I., Mathematical Problems in Classical Physics, in Trends and Perspectives in Applied Mathematics, Appl. Math. Sci., New York: Springer, 1994, pp. 1–20.

    Google Scholar 

  10. Birkhoff, G. D., Dynamical Systems, Providence, R.I.: AMS, 1966.

    MATH  Google Scholar 

  11. Colin de Verdière, Y. and Vey, J., Le lemme de Morse isochore, Topology, 1979, vol. 18, no. 4, pp. 283–293.

    Article  MathSciNet  Google Scholar 

  12. Dirac, P. A. M., Generalised Hamiltonian Dynamics, Can. J. Math., 1950, vol. 2, pp. 129–148.

    Article  Google Scholar 

  13. Françoise, J.-P., Relative Cohomology and Volume Forms, in Singularities (Warsaw, 1985), Banach Center Publ., Warsaw: PWN, 1988, pp. 207–222.

    Google Scholar 

  14. Garay, M. D., An Isochore Versal Deformation Theorem, Topology, 2004, vol. 43, no. 5, pp. 1081–1088.

    Article  MathSciNet  Google Scholar 

  15. Golubitsky, M. and Guillemin, V., Stable Mappings and Their Singularities, New York: Springer, 1973.

    Book  Google Scholar 

  16. Kirillov, I., Morse – Darboux Lemma on Surfaces with Boundary, J. Geom. Phys., 2018, vol. 129, pp. 34–40.

    Article  MathSciNet  Google Scholar 

  17. Kourliouros, K., Gauss – Manin Connections for Boundary Singularities and Isochore Deformations, Demonstr. Math., 2015, vol. 48, no. 2, pp. 250–288.

    MathSciNet  MATH  Google Scholar 

  18. Kourliouros, K. and Zhitomirskii, M., First Occurring Singularities of Functions in Symplectic Semi-Space, J. Pure Appl. Math., 2018, vol. 2, no. 2, pp. 11–13.

    Google Scholar 

  19. Kourliouros, K., Local Diffeomorphisms in Symplectic Space and Hamiltonian Systems with Constraints, J. Geom. Phys., 2019, vol. 138, pp. 206–214.

    Article  MathSciNet  Google Scholar 

  20. Lichnerowicz, A., Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry, 1977, vol. 12, no. 2, pp. 253–300.

    Article  MathSciNet  Google Scholar 

  21. Melrose, R. B., On Equivalence of Glancing Hypersurfaces, Invent. Math., 1976, vol. 37, pp. 165–191.

    Article  MathSciNet  Google Scholar 

  22. Melrose, R. B., On Equivalence of Glancing Hypersurfaces: 2, Math. Ann., 1981, vol. 255, pp. 159–198.

    Article  MathSciNet  Google Scholar 

  23. Ōshima, T., On Analytic Equivalence of Glancing Hypersurfaces, Sci. Papers College Gen. Ed. Univ. Tokyo, 1978, vol. 28, no. 1, pp. 51–57.

    MathSciNet  MATH  Google Scholar 

  24. Pnevmatikos, S., Evolution dynamique d’un système méchanique en Présence des singularités génériques, North-Holland Math. Stud., 1985, vol. 103, pp. 209–218.

    Article  MathSciNet  Google Scholar 

  25. Vey, J., Sur le lemme de Morse, Invent. Math., 1977, vol. 40, no. 1, pp. 1–9.

    Article  MathSciNet  Google Scholar 

  26. Voronin, S. M., The Darboux – Whitney Theorem and Related Questions, in Nonlinear Stokes Phenomena, Adv. Soviet Math., Providence, R.I.: AMS, 1993, pp. 139–233.

    Chapter  Google Scholar 

  27. Zhitomirskii, M., Typical Singularities of Differential \(1\)-Forms and Pfaffian Equations, Providence, R.I.: AMS, 1992.

    Book  Google Scholar 

  28. Zung, Nguyen Tien, Convergence versus Integrability in Birkhoff Normal Form, Ann. of Math. (2), 2005, vol. 161, no. 1, pp. 141–156.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by the São Paulo Research Foundation, FAPESP [grant number: 2017/23555-9].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Kourliouros.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

34C20, 37J06, 57R45, 70H15, 70H45

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourliouros, K. Sections of Hamiltonian Systems. Regul. Chaot. Dyn. 26, 331–349 (2021). https://doi.org/10.1134/S156035472104002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156035472104002X

Keywords

Navigation