Skip to main content
Log in

Influence of calcination temperature on the cooperative catalysis of base sites and gold nanoparticles on hydrotalcite-supported gold materials for the base-free oxidative esterification of 1, 3-propanediol with methanol to methyl 3-hydroxypropionate

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Magnesium–aluminum hydrotalcite (HT) supported gold catalyst (1 wt% Au/HT) was prepared by the colloid-deposition method and characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Hammett indicator method. The effects of calcination temperature of catalyst and support on the catalytic performance of aerobic oxidative esterification of 1,3-propanediol with methanol to methyl 3-hydroxypropionate (3-HPM) under base-free condition were studied. The results showed that the conversion of 1,3-propanediol and the selectivity of 3-HPM increased first and then decreased with the increase of calcination temperature of catalyst and support. The optimal calcination temperature of catalyst and support is 150 °C. Under the optimum preparation conditions, the conversion of 1,3-propanediol and the selectivity to 3-HPM are 96.2% and 94.9%, respectively. In addition, the 1 wt% Au/HT catalyst could be effectively recovered by calcining at 150 °C in air atmosphere, and the performance of the catalyst does not decrease significantly. The performance of the catalyst is higher than that reported previously. The structure of magnesium–aluminum hydrotalcite with appropriate density and medium strength base sites and small metallic Au particles are favorable for the selective oxidative esterification of 1,3-propanediol to 3-HPM.

Graphic abstract

A 1 wt% magnesium–aluminum hydrotalcite supported gold catalyst (1 wt% Au/HT) was prepared by the colloid-deposition method. The calcination temperature plays an important role for the catalytic performance and the higher catalytic activity and product selectivity is due to the synergistic effect between the support structure with appropriate density and medium strength base sites and the smaller metallic gold particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. https://doi.org/10.1002/chin.200736263

    Article  CAS  PubMed  Google Scholar 

  2. Zhao G, Gao E, Wan Q (2019) Structure-activity relationships of Au/Al2O3 catalyst for the selective oxidative esterification of 1,3-propanediol and methanol. ChemistrySelect 4(43):12479–12490. https://doi.org/10.1002/slct.201903059

    Article  CAS  Google Scholar 

  3. Saxena RK, Anand P, Saran S (2009) Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol Adv 27(6):895–913. https://doi.org/10.1016/j.biotechadv.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  4. De Souza EA, Rossi DM, Zachia Ayub MA (2014) Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol using immobilized cells of Klebsiella pneumoniae BLh-1. Renewable Energy 72:253–257. https://doi.org/10.1016/j.renene.2014.07.030

    Article  CAS  Google Scholar 

  5. Wang X, Zhao G, Zou H (2011) The base-free and selective oxidative transformation of 1,3-propanediol into methyl esters by different Au/CeO2 catalysts. Green Chem 13(10):2690–2695. https://doi.org/10.1039/c1gc15588a

    Article  CAS  Google Scholar 

  6. Kurian JV (2005) A new polymer platform for the future — Sorona® from Corn Derived 1,3-Propanediol. J Polym Environ 13(2):159–167. https://doi.org/10.1007/s10924-005-2947-7

    Article  CAS  Google Scholar 

  7. Hayashi T, Inagaki T, Itayama N (2006) Selective oxidation of alcohol over supported gold catalysts: methyl glycolate formation from ethylene glycol and methanol. Catal Today 117(1–3):210–213. https://doi.org/10.1016/j.cattod.2006.06.045

    Article  CAS  Google Scholar 

  8. Menegazzo F, Signoretto M, Marchese D (2015) Structure–activity relationships of Au/ZrO2 catalysts for 5-hydroxymethylfurfural oxidative esterification: Effects of zirconia sulphation on gold dispersion, position and shape. J Catal 326:1–8. https://doi.org/10.1016/j.jcat.2015.03.006

    Article  CAS  Google Scholar 

  9. Mullen GM, Evans EJJ, Sabzevari I (2017) Water influences the activity and selectivity of ceria-supported gold catalysts for oxidative dehydrogenation and esterification of ethanol. ACS Catal 7(2):1216–1226. https://doi.org/10.1021/acscatal.6b02960

    Article  CAS  Google Scholar 

  10. Taarning E, Theilgaard Madsen A, Marchetti JM (2008) Oxidation of glycerol and propanediols in methanol over heterogeneous gold catalysts. Green Chem 10(4):408–414. https://doi.org/10.1039/b714292g

    Article  CAS  Google Scholar 

  11. Menegazzo F, Fantinel T, Signoretto M (2014) On the process for furfural and HMF oxidative esterification over Au/ZrO2. J Catal 319:61–70. https://doi.org/10.1016/j.jcat.2014.07.017

    Article  CAS  Google Scholar 

  12. Miyamura H, Kobayashi S (2014) Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen. Accumulation Chemistry Resolution 47(4):1054–1066. https://doi.org/10.1021/ar400224f

    Article  CAS  Google Scholar 

  13. Zuo C, Tian Y, Zheng Y (2019) One step oxidative esterification of methacrolein with methanol over Au-CeO2/γ-Al2O3 catalysts. Catal Commun 124:51–55. https://doi.org/10.1016/j.catcom.2019.03.002

    Article  CAS  Google Scholar 

  14. Casanova O, Iborra S, Corma A (2009) Biomass into chemicals: One pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. J Catal 265(1):109–116. https://doi.org/10.1016/j.jcat.2009.04.019

    Article  CAS  Google Scholar 

  15. Sankar M, He Q, Engel R, V, (2020) Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem Rev 120(8):3890–3938. https://doi.org/10.1021/acs.chemrev.9b00662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sullivan JA, Burnham S (2015) The use of alkaline earth oxides as pH modifiers for selective glycerol oxidation over supported Au catalysts. Renewable Energy 78:89–92. https://doi.org/10.1016/j.renene.2014.12.068

    Article  CAS  Google Scholar 

  17. Purushothaman RKP, van Haveren J, Melian-Cabrera I (2014) Base-free, one-pot chemocatalytic conversion of glycerol to methyl lactate using supported gold catalysts. Chemsuschem 7(4):1140–1147. https://doi.org/10.1002/cssc.201301105

    Article  CAS  Google Scholar 

  18. Nishimura S, Takagaki A, Ebitani K (2013) Characterization, synthesis and catalysis of hydrotalcite-related materials for highly efficient materials transformations. Green Chem 15(8):2026–2042. https://doi.org/10.1039/c3gc40405f

    Article  CAS  Google Scholar 

  19. Baskaran T, Christopher J, Sakthivel A (2015) Progress on layered hydrotalcite (HT) materials as potential support and catalytic materials. RSC Adv 5(120):98853–98875. https://doi.org/10.1039/c5ra19909c

    Article  CAS  Google Scholar 

  20. Liu P, Guan Y, van Santen RA (2011) Aerobic oxidation of alcohols over hydrotalcite-supported gold nanoparticles: the promotional effect of transition metal cations. Chem Commun 47(41):11540–11542. https://doi.org/10.1039/c1cc15148g

    Article  CAS  Google Scholar 

  21. Mobley JK, Crocker M (2015) Catalytic oxidation of alcohols to carbonyl compounds over hydrotalcite and hydrotalcite-supported catalysts. RSC Adv 5:65780–65797. https://doi.org/10.1039/C5RA11254K

    Article  CAS  Google Scholar 

  22. Mitsudome T, Noujima A, Mizugaki T (2009) Supported gold nanoparticles as a reusable catalyst for synthesis of lactones from diols using molecular oxygen as an oxidant under mild conditions. Green Chem 11(6):793–797. https://doi.org/10.1039/b900576e

    Article  CAS  Google Scholar 

  23. Liu P, Li C, Hensen EJM (2012) Efficient tandem synthesis of methyl esters and imines by using versatile hydrotalcite-supported gold nanoparticles. Chem Eur J 18(38):12122–12129. https://doi.org/10.1002/chem.201202077

    Article  CAS  PubMed  Google Scholar 

  24. Wei H, Li J, Yu J (2015) Gold nanoparticles supported on metal oxides as catalysts for the direct oxidative esterification of alcohols under mild conditions. Inorg Chim Acta 427:33–40. https://doi.org/10.1016/j.ica.2014.11.024

    Article  CAS  Google Scholar 

  25. Zhang Z, Xu S, Zeng H (2016) Influence of calcination temperature on the microstructure and catalytic performance of Mg/Al hydrotalcites catalysts for alcoholysis of propylene oxide. J Nanosci Nanotechnol 16(12):12677–12683. https://doi.org/10.1166/jnn.2016.13780

    Article  CAS  Google Scholar 

  26. Pinthong P, Praserthdam P, Jongsomjit B (2019) Effect of calcination temperature on Mg-Al Layered Double Hydroxides (LDH) as promising catalysts in oxidative dehydrogenation of ethanol to acetaldehyde. J Oleo Sci 68(1):95–102. https://doi.org/10.5650/jos.ess18177

    Article  CAS  PubMed  Google Scholar 

  27. Cavani F, Trifirb F, Vaccari A (1991) Hydrotalcite cite-type anionic clays: preparation, properites and applicatioms. Catal Today 11:173–301. https://doi.org/10.1002/chin.199212317

    Article  CAS  Google Scholar 

  28. Ebitani K, Motokura K, Mori K (2006) Reconstructed hydrotalcite as a highly active heterogeneous base catalyst for carbon-carbon bond formations in the presence of water. J Org Chem 71:5440–5447. https://doi.org/10.1021/jo060345l

    Article  CAS  PubMed  Google Scholar 

  29. Xu ZP, Stevenson G, Lu C-Q (2006) Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. J Chem Phys 110:16923–16929. https://doi.org/10.1021/jp062281o

    Article  CAS  Google Scholar 

  30. Kotionova T, Lee C, Miedziak PJ (2012) Oxidative Esterification of Homologous 1,3-Propanediols. Catal Lett 142(9):1114–1120. https://doi.org/10.1007/s10562-012-0872-7

    Article  CAS  Google Scholar 

  31. Ke Y-H, Qin X-X, Liu C-L (2014) Oxidative esterification of ethylene glycol in methanol to form methyl glycolate over supported Au catalysts. Catal Sci Technol 4(9):3141–3150. https://doi.org/10.1039/c4cy00556b

    Article  CAS  Google Scholar 

  32. Tang R, Tian Y, Qiao Y (2016) Bifunctional base catalyst for vacuum residue cracking gasification. Fuel Process Technol 153:1–8. https://doi.org/10.1016/j.fuproc.2016.07.022

    Article  CAS  Google Scholar 

  33. Redondo N, Dieuzeide ML, Amadeo N (2020) Acid removal from crude oils by catalytic esterification naphthenic acid catalize by Mg/Al hydrotalcite. Catal Today 353:82–87. https://doi.org/10.1016/j.cattod.2019.09.051

    Article  CAS  Google Scholar 

  34. Fang S, Xia Y, Lv K (2016) Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl Catal B 185:225–232. https://doi.org/10.1016/j.apcatb.2015.12.025

    Article  CAS  Google Scholar 

  35. Liu M, Fan G, Yu J (2018) Defect-rich Ni-Ti layered double hydroxide as a highly efficient support for Au nanoparticles in base-free and solvent-free selective oxidation of benzyl alcohol. Dalton Trans 47(15):5226–5235. https://doi.org/10.1039/c7dt04229a

    Article  CAS  PubMed  Google Scholar 

  36. Foster DM, Pavloudis T, Kioseoglou J, Palmer RE (2019) Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon. Nature Communication 10(1):2583. https://doi.org/10.1038/s41467-019-10713-z

    Article  CAS  Google Scholar 

  37. Sahua N, Paridaa KM, Tripathib AK, Kambleb VS (2011) Low temperature CO adsorption and oxidation over Au/rare earth-TiO2 nanocatalysts. Appl Catal A 399(1–2):110–116. https://doi.org/10.1016/j.apcata.2011.03.052

    Article  CAS  Google Scholar 

  38. Xin JY, Lin K, Wang Y, Xia CG (2014) Methanobactin-mediated synthesis of gold nanoparticles supported over Al2O3 toward an efficient catalyst for glucose oxidation. Int J Mol Sci 15(12):21603–21620. https://doi.org/10.3390/ijms151221603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Wang H, Xu B (2005) Remarkable nanosize effect of zirconia in Au@ZrO2 catalyst for CO oxidation. J Phys Chem B 109:9678–9683. https://doi.org/10.1021/jp050645r

    Article  CAS  PubMed  Google Scholar 

  40. Tian Y, Zhou H, Qiao Y, Tang R, Zhao G, Leng G (2017) In-situ reduction of Cu(CH3COO)2 to prepare π-complexation adsorbent for propylene/propane separation by slurry bed. Sep Sci Technol 52(12):1959–1966. https://doi.org/10.1080/01496395.2017.1310238

    Article  CAS  Google Scholar 

  41. Mackenzie KJD, Meinhold RH, Sherriff BL (1993) 27Al and 25Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence. J Mater Chem 3(12):1263–1269. https://doi.org/10.1039/jm9930301263

    Article  CAS  Google Scholar 

  42. Tang R, Wang S, Che Y (2017) Adjustment of the product distribution over a bifunctional Ca12Al14O33-supported MnOx catalyst from cracking gasification of the petroleum residue. Energy Fuels 31(6):5995–6003. https://doi.org/10.1021/acs.energyfuels.7b00600

    Article  CAS  Google Scholar 

  43. Take J-I, Kikuchi N, Yoneda Y (1971) Base-strength distribution studies of solid-base surfaces. J Catal 21(2):164–170. https://doi.org/10.1016/0021-9517(71)90134-5

    Article  CAS  Google Scholar 

  44. Hammett L, Deyrup A (1932) A series of simple basic indicators II Some applications to solutions in formic acid. J Am Chem Soc 54(11):4239–4247. https://doi.org/10.1021/ja01346a015

    Article  CAS  Google Scholar 

  45. Shen JT, Mai HuC (1998) Structural and surface acid-base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures. J Solid State Chem 137(2):295–301. https://doi.org/10.1006/jssc.1997.7739

    Article  CAS  Google Scholar 

  46. Zeng H-Y, Xu S, Liao M-C (2014) Activation of reconstructed Mg/Al hydrotalcites in the transesterification of microalgae oil. Appl Clay Sci 91–92:16–24. https://doi.org/10.1016/j.clay.2014.02.003

    Article  CAS  Google Scholar 

  47. Song J, Yu G, Li X, Yang X, Zhang W, Yan W, Liu G (2018) Oxidative coupling of alcohols and amines to an imine over Mg-Al acid-base bifunctional oxide catalysts. Chin J Catal 39(2):309–318. https://doi.org/10.1016/s1872-2067(17)63006-7

    Article  CAS  Google Scholar 

  48. Brett GL, Miedziak PJ, Knight DW, Taylor SH, Hutchings GJ (2013) Gold-Based Nanoparticulate Catalysts for the Oxidative Esterification of 1,4-Butanediol to Dimethyl Succinate. Top Catal 57(6–9):723–729. https://doi.org/10.1007/s11244-013-0229-5

    Article  CAS  Google Scholar 

  49. Fang W, Chen J, Zhang Q, Deng W, Wang Y (2011) Hydrotalcite-supported gold catalyst for the oxidant-free dehydrogenation of benzyl alcohol: studies on support and gold size effects. Chemistry 17(4):1247–1256. https://doi.org/10.1002/chem.201002469

    Article  CAS  PubMed  Google Scholar 

  50. Lin Y, Lu G-P, Zhao X, Cao X, Yang L, Zhou B, Zhong Q, Chen Z (2020) Porous cobalt@N-doped carbon derived from chitosan for oxidative esterification of 5-Hydroxymethylfurfural: The roles of zinc in the synthetic and catalytic process. Mol Catal. https://doi.org/10.1016/j.mcat.2019.110695

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21206185), Qingdao Postdoctoral Applied Research Project (Grant No. 2015202), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (Grant No. 2016RCJJ006), Innovative training program for College Students (Grant No. 202010424079), the fund of the Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science (Grant No. CHCL20003), science and technology research guiding plan project of China Coal Industry Association (Grant No. MTKJ 2016-267).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoming Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 898 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Q., Wang, X., Zhao, B. et al. Influence of calcination temperature on the cooperative catalysis of base sites and gold nanoparticles on hydrotalcite-supported gold materials for the base-free oxidative esterification of 1, 3-propanediol with methanol to methyl 3-hydroxypropionate. Reac Kinet Mech Cat 134, 109–125 (2021). https://doi.org/10.1007/s11144-021-02042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02042-4

Keywords

Navigation