Skip to main content
Log in

Highly Sensitive THz Refractive Index Sensor Based on Folded Split-Ring Metamaterial Graphene Resonators

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A highly sensitive absorption-based sensor based on folded split-ring metamaterial graphene resonators (FSRMGRs) is designed, and its biomedical application in terahertz (THz) spectrum is investigated. The sensor has a nearly perfect absorption, with a spectral absorption coefficient of 99.75% at 4 THz and an average Q-factor of 13.76. The resonance peak frequency is sensitive to the refractive index (RI) of the test medium (analyte), and a fairly high sensitivity of 851 GHz/RIU has been obtained. The specifications of the sensor can be tuned by an external DC-bias voltage applied to the graphene layer. According to the obtained results, the developed absorber appears to be a good candidate bio-sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Materials

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nickpay MR, Danaie M, Shahzadi A (2020) A wideband and polarization-insensitive graphene-based metamaterial absorber. Superlattice Microst p. 106786

  2. Nickpay MR, Danaie M, Shahzadi A (in press) Design of a multi-band metamaterial perfect graphene-based absorber in THz frequency range for refractive index sensor

  3. Zhang XW, Qi YP, Zhou PY, Gong HH, Hu BB, Yan CM (2018) Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators. Photon Sens 8:367–374

    CAS  Google Scholar 

  4. Cen C, Lin H, Huang J, Liang C, Chen X, Tang Y et al (2018) A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays. Sensors 18:4489

    PubMed Central  Google Scholar 

  5. Wang XX, Wu XX, Zhu JK, Pang ZY, Yang H, Qi YP (2019) Theoretical investigation of a highly sensitive refractive-index sensor based on TM0 waveguide mode resonance excited in an asymmetric metal-cladding dielectric waveguide structure. Sensors 19:1187

    CAS  PubMed Central  Google Scholar 

  6. Wang B, Zhai X, Wang G, Huang W, Wang L (2015) A novel dual-band terahertz metamaterial absorber for a sensor application. J Appl Phys 117:014504.

  7. Wang B, Wang G, Sang T (2016) Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J Phys D Appl Phys 49:165307.

  8. Xu W, Xie L, Ying Y (2017) Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale 9(37):13864–13878

    CAS  PubMed  Google Scholar 

  9. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211):376–379

  10. Pendry BJ (2006) Metamaterials and negative refraction. Nat Mater 5:755–764

    Google Scholar 

  11. Luo X, Zhai X, Wang L, Lin Q (2018) Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber. Opt Express 26(9):11658–11666

    CAS  PubMed  Google Scholar 

  12. Jylhä L, Kolmakov I, Maslovski S, Tretyakov S (2006) Modeling of isotropic backward-wave materials composed of resonance spheres. J Appl Phys 99(4):043102

  13. Vafapour Z, Dutta M, Stroscio MA (2021) Sensing, switching, and modulating applications of a superconducting THz metamaterial. IEEE Sensors J

  14. Vafapour Z, Ghahraloud H, Keshavarz A, Islam MS, Rashidi A, Dutta M, Stroscio MA (2021) The potential of refractive index nanobiosensing using a multi-band optically tuned perfect light metamaterial absorber. IEEE Sens J 21(12):13786–13793

    CAS  Google Scholar 

  15. Patel SK, Parmar J, Sorathiya V, Nguyen TK, Dhasarathan V (2021) Tunable infrared metamaterial-based biosensor for detection of hemoglobin and urine using phase change material. Sci Rep 11(1):1–11

    Google Scholar 

  16. Vafapour Z (2019) Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications. IEEE Trans Nanobiosci 18(4):622–627

    Google Scholar 

  17. Zeng Y, Chen XF, Yi Z, Yi YG, Xu XB (2018) Fabrication of p-n heterostructure ZnO/Si moth-eye structures: antireflection, enhanced charge separation and photocatalytic properties. Appl Surf Sci 441:40–48

    CAS  Google Scholar 

  18. Yan YX, Yang H, Yi Z, Li RS, Wang XX (2019) Enhanced photocatalytic performance and mechanism of Au@CaTiO3 composites with Au nanoparticles assembled on CaTiO3 nanocuboids. Micromachines 10:254

    PubMed Central  Google Scholar 

  19. Di LJ, Yang H, Xian T, Liu XQ, Chen XJ (2019) Photocatalytic and photo-Fenton catalytic degradation activities of Z-scheme Ag2S/BiFeO3 heterojunction composites under visible-light irradiation. Nanomaterials 9:399

    CAS  PubMed Central  Google Scholar 

  20. Liu G, Chen J, Pan P, Liu Z (2019) Hybrid metal-semiconductor meta-surface based photoelectronic perfect absorber. IEEE J Sel Top Quantum Electron 25:1–7

    Google Scholar 

  21. Sarısaman M, Tas M (2018) PT-symmetric coherent perfect absorber with grapheme. J Opt Soc Am B 35:2423–2432

    Google Scholar 

  22. Gao HJ, Wang F, Wang SF, Wang XX, Yi Z, Yang H (2019) Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: synthesis and photocatalytic mechanism. Mater Res Bull 115:140–149

    CAS  Google Scholar 

  23. Zhao XX, Yang H, Li SH, Cui ZM, Zhang CR (2018) Synthesis and theoretical study of largesized Bi4Ti3O12 square nanosheets with high photocatalytic activity. Mater Res Bull 107:180–188

    CAS  Google Scholar 

  24. Yan YX, Yang H, Zhao XX, Li RS, Wang XX (2018) Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater Res Bull 105:286–290

    CAS  Google Scholar 

  25. Patel SK, Charola S, Jadeja R, Nguyen TK, Dhasarathan V (2021) Wideband graphene-based near-infrared solar absorber using C-shaped rectangular sawtooth metasurface. Physica E: Low-dimensional Systems and Nanostructures 126:114493

  26. Nasirifar R, Danaie M, Dideban A (2019) Dual channel optical fiber refractive index sensor based on surface plasmon resonance. Optik 186:194–204

    CAS  Google Scholar 

  27. Rahmatiyar M, Danaie M, Afsahi M (2020) Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt Quant Electron 52(3):1–19

    Google Scholar 

  28. Rahman-Zadeh F, Danaie M, Kaatuzian H (2019) Design of a highly sensitive photonic crystal refractive index sensor incorporating ring-shaped GaAs cavity. Opto-Electron Rev 27(4):369–377

    Google Scholar 

  29. Rahmatiyar M, Afsahi M, Danaie M (2020) Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15(6):2169–2176

    CAS  Google Scholar 

  30. Armaghani S, Khani S, Danaie M (2019) Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing optical Kerr effect. Superlattice Microst 135:106244

  31. Yi Z, Huang J, Cen C, Chen X, Zhou Z, Tang Y, Wang B, Yi Y, Wang J, Wu P (2019) Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results in Physics 14:102367

  32. Huang J, Niu G, Yi Z, Chen XF, Zhou ZG, Ye X et al (2019) High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk grapheme metamaterials. Phys Scr. https://doi.org/10.1088/1402-4896/ab185f

    Article  Google Scholar 

  33. Wang XX, Bai XL, Pang ZY, Zhu JK, Wu Y, Yang H et al (2019) Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film. Opt Mater Express 9:1872–1881

    CAS  Google Scholar 

  34. Chen XF, Cen CL, Zhou L, Cao RF, Yi Z, Tang YJ (2019) Magnetic properties and reverse magnetization process of anisotropic nanocomposite permanent magnet. J Magn Magn Mater 483:152–157

    CAS  Google Scholar 

  35. Zhang QB, Liao J, Liao M, Dai JY, Ge HL, Duan T et al (2019) One-dimensional Fe7S8@C nanorods as anode materials for high-rate and long-life lithium-ion batteries. Appl Surf Sci 473:799–806

    CAS  Google Scholar 

  36. Li D, Lin S, Hu F, Chen Z, Zhang W, Han J (2019) Metamaterial terahertz sensor for measuring thermal-induced denaturation temperature of insulin. IEEE Sens J 20(4):1821–1828

    Google Scholar 

  37. Saadeldin AS, Hameed MFO, Elkaramany EM, Obayya SS (2019) Highly sensitive terahertz metamaterial sensor. IEEE Sens J 19(18):7993–7999

    CAS  Google Scholar 

  38. Zhang W, Lan F, Xuan J, Mazumder P, Aghadjani M, Yang Z, Men L (2017) Ultrasensitive dual-band terahertz sensing with metamaterial perfect absorber. In 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) (pp. 1–3). IEEE

  39. Nickpay MR, Danaie M, Shahzadi A (2019) Wideband rectangular double-ring nanoribbon graphene-based antenna for terahertz communications. IETE J Res pp. 1–10

  40. Moradi M, Danaie M, Orouji AA (2019) Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt Quant Electron 51(5):1–18

    CAS  Google Scholar 

  41. Khani S, Danaie M, Rezaei P (2019) Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities. IET Optoelectron 13(4):161–171

    Google Scholar 

  42. Danaie M, Geravand A (2018) Design of low-cross-talk metal–insulator–metal plasmonic waveguide intersections based on proposed cross-shaped resonators. J Nanophotonics 12(4):046009

  43. Hajshahvaladi L, Kaatuzian H, Danaie M (2019) Design and analysis of a plasmonic demultiplexer based on band-stop filters using double-nanodisk-shaped resonators. Opt Quant Electron 51(12):391

    Google Scholar 

  44. Khani S, Danaie M, Rezaei P (2020) Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: a theoretical and numerical study on challenges and solutions. Opt Commun 477:126359

  45. Shafagh SG, Kaatuzian H, Danaie M (2020) Analysis, design and simulation of MIM plasmonic filters with different geometries for technical parameters improvement. Commun Theor Phys 72(8):085502

  46. Islam MS, Sultana J, Biabanifard M, Vafapour Z, Nine MJ, Dinovitser A, Cordeiro CMB, Ng BH, Abbott D (2020) Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon 158:559–567

    CAS  Google Scholar 

  47. Liu X, Liu G, Tang P, Fu G, Du G, Chen Q et al (2018) Quantitatively optical and electrical adjusting high-performance switch by graphene plasmonic perfect absorbers. Carbon 140:362–7

  48. Wang J, Yang L, Hu Z, He W, Zheng G (2019) Analysis of graphene-based multilayer comblike absorption system based on multiple waveguide theory. IEEE Photon Technol Lett 31:561–564

    CAS  Google Scholar 

  49. Patel SK, Sorathiya V, Sbeah Z, Lavadiya S, Nguyen TK, Dhasarathan V (2020) Graphene-based tunable infrared multi band absorber. Opt Commun 474:126109

  50. Wu Z, Xu B, Yan M, Wu B, Cheng P, Sun Z (2021) Tunable terahertz perfect absorber with a graphene-based double split-ring structure. Optical Materials Express 11(1):73–79

    Google Scholar 

  51. Khani S, Danaie M, Rezaei P (2020) Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. Photonics Nanostruct Fundam Appl 40:100802

  52. Khani S, Danaie M, Rezaei P (2020) Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattice Microst 141:106481

  53. Liu C, Yang L, Liu Q, Wang FM, Sun ZJ, Sun T et al (2018) Analysis of a surface plasmon resonance probe based on photonic crystal fibers for low refractive index detection. Plasmonics 13:779–784

    CAS  Google Scholar 

  54. Patel SK, Parmar J, Zakaria RB, Sharafali A, Nguyen TK, Dhasarathan V (2020) Sensitivity analysis of metasurface array-based refractive index biosensors. IEEE Sens J 21(2):1470–1477

    Google Scholar 

  55. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302

  56. Nejat M, Nozhat N (2020) Sensing and switching capabilities of a graphene-based perfect dual-band metamaterial absorber with analytical methods. JOSA B 37(5):1359–1366

    CAS  Google Scholar 

  57. Cen C, Yi Z, Zhang G, Zhang Y, Liang C, Chen X, Tang Y, Ye X, Yi Y, Wang J, Hua J (2019) Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range. Results in Physics 14:102463

  58. Chen J, Zha TQ, Zhang T, Tang CJ, Yu Y, Liu YJ et al (2017) Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials. J Lightwave Technol 35:71

    Google Scholar 

  59. Li CC, Xie BS, Chen J, He ZX, Chen ZS, Long Y (2019) Emerging mineral-coupled composite phase change materials for thermal energy storage. Energy Convers Manage 183:633–644

    CAS  Google Scholar 

  60. Sánchez Pastor J (2017) Sensitivity analysis of single split ring resonators and single complementary split ring resonators coupled to planar transmission lines. Degree in Technology Engineering and Telecommunication Services - Graduate in Technology Engineering and Telecommunication Services. Polytechnic University of Valencia. Valencia

  61. Liu G, Liu X, Chen J, Li Y, Shi L, Fu G et al (2019) Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters. Sol Energy Mater Sol Cells 190:20–29

    CAS  Google Scholar 

  62. Liu G, Chen J, Pan P, Liu Z (2019) Hybrid Metal-semiconductor meta-surface based photoelectronic perfect absorber. IEEE J Sel Top Quant Electron 25(3):1–7

    Google Scholar 

  63. Ma X, Xie M, Wu WQ, Zeng B, Wang Y, Wu XX (2019) The novel fractional discrete multivariate grey system model and its applications. Appl Math Model 70:402–424

    Google Scholar 

  64. Khani S, Danaie M, Rezaei P (2021) Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines. J Comput Electron 20(1):442–457

    CAS  Google Scholar 

  65. Nejad HE, Mir A, Farmani A (2019) Supersensitive and tunable nano-biosensor for cancer detection. IEEE Sens J 19(13):4874–4881

    CAS  Google Scholar 

  66. Albishi AM, El Badawe MK, Nayyeri V, Ramahi OM (2020) Enhancing the sensitivity of dielectric sensors with multiple coupled complementary split-ring resonators. IEEE Trans Microw Theory Techn 68(10):4340–4347

  67. Astley V, Reichel KS, Jones J, Mendis R, Mittleman DM (2012) Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonance cavities. Appl Phys Lett 100(23):231108

  68. You B, Lu JY, Liu TA, Peng JL (2013) Hybrid terahertz plasmonic waveguide for sensing applications. Opt Express 21(18):21087–21096

    PubMed  Google Scholar 

  69. Cong L, Singh R (2014) Sensing with THz metamaterial absorbers. arXiv preprint arXiv: 1408.3711

  70. Fan F, Chen S, Wang XH, Wu PF, Chang SJ (2014) Terahertz refractive index sensing based on photonic column array. IEEE Photonics Technol Lett 27(5):478–481

    Google Scholar 

  71. Cong L, Tan S, Yahiaoui R, Yan F, Zhang W, Singh R (2015) Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl Phys Lett 106(3):031107

  72. Li X, Song J, Zhang JX (2016) Design of terahertz metal-dielectric-metal waveguide with microfluidic sensing stub. Optics Communications 361:130–137

    CAS  Google Scholar 

  73. Soltani A, Neshasteh H, Mataji-Kojouri A, Born N, Castro-Camus E, Shahabadi M, Koch M (2016) Highly sensitive terahertz dielectric sensor for small-volume liquid samples. Appl Phys Lett 108(19):191105

  74. Wang W, Wang K, Yang Z, Liu J (2017) Experimental demonstration of an ultra-flexible metamaterial absorber and its application in sensing. J Phys D Appl Phys 50(13):135108

  75. Keshavarz A, Vafapour Z (2019) Sensing avian influenza viruses using terahertz metamaterial reflector. IEEE Sens J 19(13):5161–5166

    CAS  Google Scholar 

  76. Vanani FG, Fardoost A, Safian R (2018) Design of double ring label-free terahertz sensor. IEEE Sens J 19(4):1293–1298

    Google Scholar 

  77. Chen CY, Yang YH, Yen TJ (2013) Unveiling the electromagnetic responses of fourfold symmetric metamaterials and their terahertz sensing capability. Appl Phys Express 6(2):022002

  78. Tang PR, Li J, Du LH, Liu Q, Peng QX, Zhao JH, Zhu B, Li ZR, Zhu LG (2018) Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure. Opt Express 26(23):30655–30666

    CAS  PubMed  Google Scholar 

  79. Hu S, Liu D, Yang H, Wang H, Wang Y (2019) Staggered H-shaped metamaterial based on electromagnetically induced transparency effect and its refractive index sensing performance. Optics Communications 450:202–207

    CAS  Google Scholar 

  80. Keshavarz MM, Alighanbari A (2019) Terahertz refractive index sensor based on Tamm plasmon-polaritons with graphene. Appl Opt 58(13):3604–3612

    CAS  Google Scholar 

  81. Srivastava YK, Ako RT, Gupta M, Bhaskaran M, Sriram S, Singh R (2019) Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Appl Phys Lett 115(15):151105

  82. Chen T, Zhang D, Huang F, Li Z, Hu F (2020) Design of a terahertz metamaterial sensor based on split ring resonator nested square ring resonator. Materials Research Express 7(9):095802

  83. Wang Y, Zhu D, Cui Z, Yue L, Zhang X, Hou L, Zhang K, Hu H (2020) Properties and sensing performance of all-dielectric metasurface THz absorbers. IEEE Transactions on Terahertz Science and Technology 10(6):599–605

    Google Scholar 

  84. Emaminejad H, Mir A, Farmani A (2021) Design and simulation of a novel tunable terahertz biosensor based on metamaterials for simultaneous monitoring of blood and urine components. Plasmonics pp.1–12

  85. Hamouleh-Alipour A, Mir A, Farmani A (2021) Analytical modeling and design of a graphene metasurface sensor for thermo-optical detection of terahertz plasmons. IEEE Sensors J

  86. Fu Y, Li S, Chen Y, Zhang X, Chen K (2021) A multi-band absorber based on a dual-trident structure for sensing application. Opt Quant Electron 53(2):1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Design, analysis, and investigation: Mohammad-Reza Nickpay, Writing—original draft preparation: Mohammad-Reza Nickpay, Writing—review and editing: Mohammad Danaie, Supervision: Mohammad Danaie and Ali Shahzadi.

Corresponding author

Correspondence to Mohammad Danaie.

Ethics declarations

Ethical Approval

We the undersigned declare that the manuscript entitled “highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators” is original, has not been fully or partly published before, and is not currently being considered for publication elsewhere. Also, results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nickpay, MR., Danaie, M. & Shahzadi, A. Highly Sensitive THz Refractive Index Sensor Based on Folded Split-Ring Metamaterial Graphene Resonators. Plasmonics 17, 237–248 (2022). https://doi.org/10.1007/s11468-021-01512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01512-8

Keywords

Navigation