Skip to main content

Advertisement

Log in

Highly Sensitive Plasmonic Refractive Index Sensor Using Doped Silicon: an Alternative to MIM Structures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Metal–Insulator-Metal (MIM) structures possess a number of shortcomings which include optical loss, tenability, nanofabrication challenges, chemical instability, incompatible manufacturing process etc. To overcome these shortcomings, the plasmonic properties of heavily n-doped silicon are studied and found to be similar to those of conventional plasmonic metals like gold or silver. A plasmonic refractive index sensor using n-doped silicon instead of metal is designed and analyzed numerically using the finite element method (FEM). A maximum sensitivity of 4900 nm/RIU, which is higher than most of the MIM plasmonic refractive index (RI) sensors proposed to date, is obtained here. The RI sensor reported here provides a significant improvement in the sensitivity of the device along with its compatibility with traditional nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gramotnev DK, Bozhevolnyi SI (2014) Nanofocusing of electromagnetic radiation. Nat Photonics 8(1):13

    CAS  Google Scholar 

  2. Zenin VA et al (2015) Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas. Nano Lett 15(12):8148–8154. https://doi.org/10.1021/acs.nanolett.5b03593

    Article  CAS  PubMed  Google Scholar 

  3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824

    CAS  PubMed  Google Scholar 

  4. Lu H, Liu X, Wang G, Mao D (2012) Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 23(44):444003

    PubMed  Google Scholar 

  5. Wang H et al (2016) Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure. Opt Lett 41(6):1233–1236

    PubMed  Google Scholar 

  6. Tian J, Yu S, Yan W, Qiu M (2009) Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Appl Phys Lett 95(1):13504

    Google Scholar 

  7. Bahadori-Haghighi S, Ghayour R, Sheikhi MH (2019) All-optical cross-bar switch based on a low-loss suspended graphene plasmonic coupler. Plasmonics 14(2):447–456. https://doi.org/10.1007/s11468-018-0823-2

    Article  CAS  Google Scholar 

  8. Gogoi N, Sahu PP (2018) All-optical tunable power splitter based on a surface plasmonic two-mode interference waveguide. Appl Opt 57(10):2715–2719

    CAS  PubMed  Google Scholar 

  9. Nozhat N, Granpayeh N (2011) Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits. Opt Commun 284(13):3449–3455. https://doi.org/10.1016/j.optcom.2011.03.007

    Article  CAS  Google Scholar 

  10. Guo Y et al (2011) A plasmonic splitter based on slot cavity 19(15):19091–19096

    Google Scholar 

  11. Zhang Y et al (2019) High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity. Appl Phys A 125(1):13

    Google Scholar 

  12. Zhang Z et al (2018) Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18(1):116

    PubMed Central  Google Scholar 

  13. Butt MA, Khonina SN, Kazanskiy NL (2018) Hybrid plasmonic waveguide-assisted metal–insulator–metal ring resonator for refractive index sensing. J Mod Opt 65(9):1135–1140

    CAS  Google Scholar 

  14. Daneshmandi O, Alighanbari A, Gharavi A (2015) Characteristics of new hybrid plasmonic Bragg reflectors based on sinusoidal and triangular gratings. Plasmonics 10(1):233–239

    CAS  Google Scholar 

  15. Hosseini A, Massoud Y (2006) A low-loss metal-insulator-metal plasmonic bragg reflector. Opt Express 14(23):11318–11323

    Google Scholar 

  16. Liu J-Q et al (2008) A wide bandgap plasmonic Bragg reflector. Opt Express 16(7):4888–4894

    PubMed  Google Scholar 

  17. Haffner C et al (2015) All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics 9(8):525

    CAS  Google Scholar 

  18. Gan Q, Gao Y, Bartoli FJ (2009) Vertical plasmonic Mach-Zehnder interferometer for sensitive optical sensing. Opt Express 17(23):2847–2852

    Google Scholar 

  19. Gao Y, Gan Q, Xin Z, Cheng X, Bartoli FJ (2011) Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano 5(12):9836–9844. https://doi.org/10.1021/nn2034204

    Article  CAS  PubMed  Google Scholar 

  20. Shen Y et al (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381

    PubMed  Google Scholar 

  21. Wang H (2018) Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations. Sci Rep 8(1):9589

    PubMed  PubMed Central  Google Scholar 

  22. Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22(7):7669–7677

    CAS  PubMed  Google Scholar 

  23. Srivastava T, Das R, Jha R (2013) Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide. Plasmonics 8(2):515–521. https://doi.org/10.1007/s11468-012-9421-x

    Article  CAS  Google Scholar 

  24. Azab MY, Hameed MFO, Obayya SSA (2019) Temperature sensors based on plasmonic photonic crystal fiber, in Computational Photonic Sensors, Springer, pp 179–201

  25. Tittl A, Giessen H, Liu N (2014) Plasmonic gas and chemical sensing. Nanophotonics 3(3):157–180

    CAS  Google Scholar 

  26. Bingham JM, Anker JN, Kreno LE, Van Duyne RP (2010) Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132(49):17358–17359

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6(11):709

    CAS  Google Scholar 

  28. Law W, Yong K, Baev A, Prasad PN, Al LAWET (2011) Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement 6:4858–4864

    Google Scholar 

  29. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271. https://doi.org/10.1364/ao.37.005271

    Article  PubMed  Google Scholar 

  30. Khurgin JB, Boltasseva A (2012) Reflecting upon the losses in plasmonics and metamaterials. MRS Bull 37(8):768–779. https://doi.org/10.1557/mrs.2012.173

    Article  CAS  Google Scholar 

  31. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1(4):224

    CAS  Google Scholar 

  32. Cohen RW, Cody GD, Coutts MD, Abeles B (1973) Optical properties of granular silver and gold films. Phys Rev B 8(8):3689

    CAS  Google Scholar 

  33. Yagil Y, Deutscher G (1987) Transmittance of thin metal films near the percolation threshold. Thin Solid Films 152(3):465–471

    CAS  Google Scholar 

  34. Abelès F, Borensztein Y, López-Rios T (1984) Optical properties of discontinuous thin films and rough surfaces of silver, in Advances in Solid State Physics, Springer, pp 93–117

  35. Fuchs K (1938) The conductivity of thin metallic films according to the electron theory of metals. Math Proc Cambridge Philos Soc 34(1):100–108

    CAS  Google Scholar 

  36. Warkusz F (1980) Electrical and mechanical properties of thin metal films: size effects. Prog Surf Sci 10(3):287–382

    CAS  Google Scholar 

  37. Kretschmann E (1972) Decay of non radiative surface plasmons into light on rough silver films Comparison of experimental and theoretical results. Opt Commun 6(2):185–187

    Google Scholar 

  38. Hornauer D-L (1976) Light scattering experiments on silver films of different roughness using surface plasmon excitation. Opt Commun 16(1):76–79

    CAS  Google Scholar 

  39. Campbell WE, Thomas UB (1938) Films on freshly abraded copper surfaces [7]. Nature 142(3588):253–254. https://doi.org/10.1038/142253b0

    Article  CAS  Google Scholar 

  40. Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7(7):1947–1952

    CAS  Google Scholar 

  41. Bennett HE, Peck RL, Burge DK, Bennett JM (1969) Formation and growth of tarnish on evaporated silver films. J Appl Phys 40(8):3351–3360. https://doi.org/10.1063/1.1658187

    Article  CAS  Google Scholar 

  42. Burge DK, Bennett JM, Peck RL, Bennett HE (1969) Growth of surface films on silver. Surf Sci 16:303–320

    CAS  Google Scholar 

  43. Bemski G (1958) Recombination properties of gold in silicon. Phys Rev 111(6):1515

    CAS  Google Scholar 

  44. Yau LD, Sah CT (1972) Measurement of trapped-minority-carrier thermal emission rates from Au, Ag, and Co traps in silicon. Appl Phys Lett 21(4):157–158

    CAS  Google Scholar 

  45. Palik ED (1997) Handbook of Optical Constants of Solids, Five-Volume Set: Handbook of Thermo-Optic Coefficients of Optical Materials with Applications. Elsevier

  46. Soref R, Fellow L, Paper I (2006) The past , present , and future of silicon photonics 12(6):1678–1687

  47. Dionne JA, Sweatlock LA, Sheldon MT, Alivisatos AP, Atwater HA (2010) Silicon-based plasmonics for on-chip photonics. IEEE J Sel Top quantum Electron 16(1):295–306

    CAS  Google Scholar 

  48. Hryciw A, Jun YC, Brongersma ML (2010) Plasmonics: electrifying plasmonics on silicon. Nat Mater 9(1):3

    CAS  PubMed  Google Scholar 

  49. Soref R (2010) Mid-infrared photonics in silicon and germanium. Nat Photonics 4(8):495

    CAS  Google Scholar 

  50. Balkanski M, Aziza A, Amzallag E (1969) Infrared absorption in heavily doped n-type Si. Phys status solidi 31(1):323–330

    CAS  Google Scholar 

  51. Schroder DK, Thomas RN, Swartz JC (1978) Free carrier absorption in silicon. IEEE J Solid-State Circuits 13(1):180–187

    Google Scholar 

  52. Trumbore FA (1960) Solid solubilities of impurity elements in germanium and silicon. Bell Syst Tech J 39(1):205–233

    Google Scholar 

  53. Barber HD (1967) Effective mass and intrinsic concentration in silicon. Solid State Electron 10(11):1039–1051

    CAS  Google Scholar 

  54. Landau LD, Bell JS, Kearsley MJ, Pitaevskii LP, Lifshitz EM, Sykes JB (2013) Electrodynamics of continuous media, vol. 8. Elsevier

  55. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media

  56. Saber MG, Abadía N, Plant DV (2018) CMOS compatible all-silicon TM pass polarizer based on highly doped silicon waveguide. Opt Express 26(16):20878–20887

    CAS  PubMed  Google Scholar 

  57. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25(24):3264–3294

    CAS  PubMed  Google Scholar 

  58. Chen Y-B, Zhang ZM (2008) Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces. J Phys D Appl Phys 41(9):95406

    Google Scholar 

  59. Van Exter M, Grischkowsky D (1990) Carrier dynamics of electrons and holes in moderately doped silicon. Phys Rev B 41(17):12140

    Google Scholar 

  60. Naghizadeh S, Kocabaş ŞE (2017) Guidelines for designing 2D and 3D plasmonic stub resonators. J Opt Soc Am B 34(1):207. https://doi.org/10.1364/josab.34.000207

    Article  CAS  Google Scholar 

  61. Comsol AB (2005) COMSOL multiphysics user’s guide. Version Sept 10:333

    Google Scholar 

  62. Nobili D, Solmi S, Parisini A, Derdour M, Armigliato A, Moro L (1994) Precipitation, aggregation, and diffusion in heavily arsenic-doped silicon. Phys Rev B 49(4):2477

    CAS  Google Scholar 

  63. Al Mahmud R, Faruque MO, Sagor RH (2021) A highly sensitive plasmonic refractive index sensor based on triangular resonator. Opt Commun 483:126–634. https://doi.org/10.1016/j.optcom.2020.126634

    Article  CAS  Google Scholar 

  64. Al Mahmud R, Faruque MO, Sagor RH (2021) Plasmonic refractive index sensor based on ring-type pentagonal resonator with high sensitivity. Plasmonics. https://doi.org/10.1007/s11468-020-01357-7

  65. Rakhshani MR, Mansouri-Birjandi MA (2017) High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sensors Actuators, B Chem 249:168–176. https://doi.org/10.1016/j.snb.2017.04.064

    Article  CAS  Google Scholar 

  66. Butt MA, Khonina SN, Kazanskiy NL (2019) Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J Mod Opt 66(9):1038–1043. https://doi.org/10.1080/09500340.2019.1601272

    Article  CAS  Google Scholar 

  67. Tu Z, Gao D, Zhang M, Zhang D (2017) High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator. Opt Express 25(17):20911–20922

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Md. Omar Faruque and Rabiul Al Mahmud. The first draft of the manuscript was written by Md. Omar Faruque along with Rakibul Hasan Sagor. All the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Md. Omar Faruque.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faruque, M., Al Mahmud, R. & Sagor, R.H. Highly Sensitive Plasmonic Refractive Index Sensor Using Doped Silicon: an Alternative to MIM Structures. Plasmonics 17, 203–211 (2022). https://doi.org/10.1007/s11468-021-01516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01516-4

Keywords

Navigation