Skip to main content

Advertisement

Log in

Silver Nanoparticles Textured Oxide Thin Films for Surface Plasmon Enhanced Photovoltaic Properties

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this report, Ag nanoparticles were fabricated using the single-step glancing angle deposition (SS-GLAD) technique upon In2O3/TiO2 thin film. Afterward, a detailed analysis was done for the two samples such as In2O3/TiO2 thin film and In2O3/TiO2 thin film/Ag nanoparticles, to inspect the field emission scanning electron microscopy (FESEM), energy-dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), ultraviolet (UV) spectroscopy, and electrical properties. The reduction in bandgap energy for the samples of In2O3/TiO2 thin film/Ag nanoparticles (~4.16 eV) in comparison with the In2O3/TiO2 thin film (~4.28 eV) was due to trapped e–h recombination at the oxygen vacancies and electron transmission of Ag to the conduction band of the In2O3/TiO2 thin films. Moreover, under irradiation of photons Ag nanoparticles generated inorganic Ag–O compound attributable to the localized surface plasmon resonance (LSPR). Also, a ~90% high transmittance, ~60% and ~25% low reflectance in UV and visible region, fill factor (FF) of 53%, as well as power conversion efficiency (PCE) of 15.12% was observed for In2O3/TiO2 thin film/Ag nanoparticles than the In2O3/TiO2 thin film. Therefore, the use of Ag nanoparticles textured In2O3/TiO2 thin film–based device is a promising approach for the forthcoming photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The materials described in the manuscript, including all relevant raw data, will be freely available from the corresponding author upon reasonable request.

References

  1. Bertoluzzi L, Ma S (2012) On the methods of calculation of the charge collection efficiency of dye sensitized solar cells. Phys Chem Chem Phys 15(12):4283–4285. https://doi.org/10.1039/c3cp44248a

    Article  CAS  Google Scholar 

  2. Gratzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851. https://doi.org/10.1021/ic0508371

    Article  CAS  PubMed  Google Scholar 

  3. Katoh R, Furube A (2014) Electron injection efficiency in dye-sensitized solar cells. J Photochem Photobiol C 20:1–16. https://doi.org/10.1016/j.jphotochemrev.2014.02.001

    Article  CAS  Google Scholar 

  4. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398. https://doi.org/10.1038/nature12509

    Article  CAS  PubMed  Google Scholar 

  5. Park NG (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18(2):65–72. https://doi.org/10.1016/j.mattod.2014.07.007

    Article  CAS  Google Scholar 

  6. Wu R, Yang Y, Li M, Qin D, Zhang Y, Hou L (2017) Solvent engineering for high-performance PbS quantum dots solar cells. Nanomaterials 7(8):201(1–13). https://doi.org/10.3390/nano7080201

  7. Wang Z, Hu Z, Kamarudin MA, Kapil G, Tripathi A, Shen Q, Yoshino K, Minemoto T, Pandey SS, Hayase S (2018) Enhancement of charge transport in quantum dots solar cells by N-butylamine-assisted sulfur-crosslinking of PbS quantum dots. Sol Energy 174:399–408. https://doi.org/10.1016/j.solener.2018.09.026

    Article  CAS  Google Scholar 

  8. Yu P, Zhu K, Norman AG, Ferrere S, Frank AJ, Nozik AJ (2006) Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots. J Phys Chem B 110(50):25451–25454. https://doi.org/10.1021/jp064817b

    Article  CAS  PubMed  Google Scholar 

  9. Shrotriya V, Li G, Yao Y, Moriarty T, Emery K, Yang Y (2006) accurate measurement and characterization of organic solar cells. Adv Funct Mater 16(15):2016–2023. https://doi.org/10.1002/adfm.200600489

    Article  CAS  Google Scholar 

  10. Morel DL, Ghosh AK, Feng T, Stogryn EL, Purwin PE (1978) High efficiency organic solar cells. Appl Phys Lett 32(8):495–497. https://doi.org/10.1063/1.90099

    Article  CAS  Google Scholar 

  11. Stuart HR, Hall DG (1996) Absorption enhancement in silicon on insulator waveguides using metal island films. Appl Phys Lett 69(16):2327–2339. https://doi.org/10.1063/1.117513

    Article  CAS  Google Scholar 

  12. Deng Y, Cao G, Yang H, Zhou X, Wu Y (2018) Dynamic control of double plasmon-induced transparencies in aperture-coupled waveguide-cavity system. Plasmonics 13(1):345–352. https://doi.org/10.1007/s11468-017-0519-z

    Article  CAS  Google Scholar 

  13. Deng Y, Cao G, Wu Y, Zhou X, Liao W (2015) Theoretical description of dynamic transmission characteristics in MDM waveguide aperture-side-coupled with ring cavity. Plasmonics 10(6):1537–1543. https://doi.org/10.1007/s11468-015-9971-9

    Article  Google Scholar 

  14. Cao G, Li H, Deng Y, Zhan S, He Z, Li B (2014) Systematic theoretical analysis of selective-mode plasmonic filter based on aperture-side-coupled slot cavity. Plasmonics 9(5):1163–1169. https://doi.org/10.1007/s11468-014-9727-y

    Article  CAS  Google Scholar 

  15. Said DA, Ali AM, Khayyat MM, Boustimi M, Loulou M, Seoudi R (2019) A study of the influence of plasmonic resonance of gold nanoparticle doped PEDOT: PSS on the performance of organic solar cells based on CuPc/C60. Heliyon 5(11):e02675. https://doi.org/10.1016/j.heliyon.2019.e02675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Notarianni M, Vernon K, Chou A, Aljada M, Liu J, Motta N (2014) Plasmonic effect of gold nanoparticles in organic solar cells. Sol Energy 106:23–37. https://doi.org/10.1016/j.solener.2013.09.026

    Article  CAS  Google Scholar 

  17. Su YH, Ke YF, Cai SL, Yao QY (2012) Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light Sci Appl 1(6):e14. https://doi.org/10.1038/lsa.2012.14

    Article  CAS  Google Scholar 

  18. Baryshnikova KV, Petrov MI, Babicheva VE, Belov PA (2016) Plasmonic and silicon spherical nanoparticle antireflective coatings. Sci Rep 6:22136(1–11). https://doi.org/10.1038/srep22136

  19. Lesina AC, Paternoster G, Mattedi F, Ferrario L, Berini P, Ramunno L, Paris A, Vaccari A, Calliari L (2015) Modeling and characterization of antireflection coatings with embedded silver nanoparticles for silicon solar cells. Plasmonics 10(6):1525–1536. https://doi.org/10.1007/s11468-015-9957-7

    Article  CAS  Google Scholar 

  20. Singh HK, Sandeep K, Chary M, Balraj A, Sharma P, Solanki CS (2014) Investigation on silver nanoparticles-based plasmonic antireflection and its impact on electrical performance of mono c-Si solar cells. 2014 IEEE 2nd International Conference on Emerging Electronics (ICEE) 1–4. https://doi.org/10.1109/ICEmElec.2014.7151167

  21. Zhang Y, Cai B, Jia B (2016) Ultraviolet plasmonic aluminium nanoparticles for highly efficient light incoupling on silicon solar cells. Nanomaterials 6(6):95(1–10). https://doi.org/10.3390/nano6060095

  22. Parashar PK, Sharma RP, Komarala VK (2016) Plasmonic silicon solar cell comprised of aluminum nanoparticles: effect of nanoparticles' self-limiting native oxide shell on optical and electrical properties. J Appl Phys 120(14):143104–1–143104–9. https://doi.org/10.1063/1.4964869

  23. Temple TL, Bagnall DM (2011) Optical properties of gold and aluminium nanoparticles for silicon solar cell applications. J Appl Phys 109(8):084343–1–084343–1. https://doi.org/10.1063/1.3574657

  24. Wu X, Liu P, Ma L, Zhou Q, Chen Y, Lu J, Yang S (2016) Two-dimensional modelling of TiO2 nanowire based organic–inorganic hybrid perovskite solar cells. Sol Energy Mater Sol Cells 152:111–117. https://doi.org/10.1016/j.solmat.2016.03.017

    Article  CAS  Google Scholar 

  25. Wang YC, Chen CY, Kuo CW, Kuan TM, Yu CY, Chen IC (2016) Low-temperature grown indium oxide nanowire-based antireflection coatings for multi-crystalline silicon solar cells. Phys Status Solidi 213(8):2259–2263. https://doi.org/10.1002/pssa.201600005

    Article  CAS  Google Scholar 

  26. Leem DS, Edwards A, Faist M, Nelson J, Bradley Donal DC, de Mello JC (2011) Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv Mater 23(38):4371–4375. https://doi.org/10.1002/adma.201100871

    Article  CAS  PubMed  Google Scholar 

  27. Parayil SK, Lee YM, Yoon M (2009) Photoelectrochemical solar cell properties of heteropolytungstic acid-incorporated TiO2 nanodisc thin films. Electrochem commun 11(6):1211–1216. https://doi.org/10.1016/j.elecom.2009.04.031

    Article  CAS  Google Scholar 

  28. Rockstuhl C, Lederer F (2009) Photon management by metallic nanodiscs in thin film solar cells. Appl Phys Lett 94(21):213102–1–213102–3. https://doi.org/10.1063/1.3141402

  29. Ali M, Zhou F, Chen K, Kotzur C, Xiao C, Bourgeois L, Zhang X, MacFarlane DR (2016) Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat Commun 7:11335(1–5). https://doi.org/10.1038/ncomms11335

  30. Luther JM, Law M, Beard MC, Song Q, Reese MO, Ellingson RJ, Nozik AJ (2008) Schottky Solar Cells Based on Colloidal Nanocrystal Films. Nano Lett 8(10):3488–3492. https://doi.org/10.1021/nl802476m

    Article  CAS  PubMed  Google Scholar 

  31. Ergen O, Gibb A, Vazquez-Mena O, Regan WR, Zettl A (2015) Metal insulator semiconductor solar cell devices based on a Cu2O substrate utilizing h-BN as an insulating and passivating layer. Appl Phys Lett 106(10):103904–1–103904–4. https://doi.org/10.1063/1.4914181

  32. Shewchun J, Burk D, Spitzer MB (1980) MIS and SIS solar cells. IEEE Trans Electron Devices 27(4):705–716

    Article  Google Scholar 

  33. Su J, Yang H, Xu Y, Tang Y, Yi Z, Zheng F, Zhao F, Liu L, Wu P, Li H (2021) Based on ultrathin PEDOT:PSS/c-Ge solar cells design and their photoelectric performance. Coatings 11(7):748(1–12). https://doi.org/10.3390/coatings11070748

  34. Zhao F, Chen X, Yi Z, Qin F, Tang Y, Yao W, Zhou Z, Yi Y (2020) Study on the solar energy absorption of hybrid solar cells with trapezoidpyramidal structure based PEDOT:PSS/c-Ge. Sol Energy 204:635–643. https://doi.org/10.1016/j.solener.2020.05.030

    Article  CAS  Google Scholar 

  35. Sarkar MB, Choudhuri B, Bhattacharya P, Barman RN, Ghosh A, Dwivedi SMMD, Chakrabartty S, Mondal A (2018) Improved UV photodetection by indium doped TiO2 thin film based photodetector. J Nanosci Nanotechnol 18(7):4898–4903. https://doi.org/10.1166/jnn.2018.15295

    Article  CAS  PubMed  Google Scholar 

  36. Nath A, Sarkar MB (2021) Surface-plasmon-induced Ag nanoparticles decorated In2O3 nanowires for low noise photodetectors. Plasmonics 16(1):37–48. https://doi.org/10.1007/s11468-020-01262-z

    Article  CAS  Google Scholar 

  37. Nath A, Raman R, Singh LR, Sarkar MB (2021) Enhanced photodetection in glancing angle deposited one-dimensional In2O3 nanorod array. J Nanosci Nanotechnol 21(5):3115–3122. https://doi.org/10.1166/jnn.2021.19280

    Article  CAS  PubMed  Google Scholar 

  38. Anand K, Kaur J, Singh RC, Thangaraj R (2016) Structural, optical and gas sensing properties of pure and Mn-doped In2O3 nanoparticles. Ceram Int 42(9):10957–10966. https://doi.org/10.1016/j.ceramint.2016.03.233

    Article  CAS  Google Scholar 

  39. Dwivedi SMMD, Ghosh A, Deepthy S, Maji M, Lahiri R, Mondal S, Ghosh C, Dalal A, Mondal A, Ghosh M (2020) Detection technique for vitamin D3 using Er-doped TiO2 nanowire-based UV photodetector. J Nanophoton 14(4):046001–1–046001–17. https://doi.org/10.1117/1.JNP.14.046001

  40. Xie W, Li Y, Sun W, Huang J, Xie H, Zhao X (2010) Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J Photochem Photobiol, A 216(2–3):149–155. https://doi.org/10.1016/j.jphotochem.2010.06.032

    Article  CAS  Google Scholar 

  41. Laskri A, Drici A, Boulouma A, Amara A, Bernede JC (2019) Investigation of microstructural and optical properties of Ag3O4 thin films sprayed onto glass substrate. J Nano R 58:90–101. https://doi.org/10.4028/www.scientific.net/JNanoR.58.90

  42. Nath A, Raman R, Yadav VK, Sannibabu P, Sarkar MB (2020) Bandgap modulation of glancing angle deposition aided Ag nanoparticles covered TiO2 thin film by high temperature annealing. J Nanosci Nanotechnol 20(12):7636–7643. https://doi.org/10.1166/jnn.2020.18575

    Article  CAS  PubMed  Google Scholar 

  43. Kubelka P (1947) New contributions to the optics of intensely light-scattering materials. Part I J Opt Soc Am 38(5):448–457. https://doi.org/10.1364/JOSA.38.000448

    Article  Google Scholar 

  44. Shin SG, Choi HW (2020) Improvement of characteristics of metal doped TiO2 thin film and application to perovskite solar cell. J Nanosci Nanotechnol 20(11):7130–7134. https://doi.org/10.1166/jnn.2020.18846

    Article  CAS  PubMed  Google Scholar 

  45. Nath A, Mahajan BK, Singh LR, Vishwas S, Nanda RK, Sarkar MB (2021) Enhancing detectivity of indium-oxide-based photodetectors via vertical nanostructuring through glancing angle deposition. J Electron Mater 1–9. https://doi.org/10.1007/s11664-021-08889-6

  46. Hassanien AS, Akl AA (2015) Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50-xSex thin films. J Alloys Compd 648:280–290. https://doi.org/10.1016/j.jallcom.2015.06.231

    Article  CAS  Google Scholar 

  47. Chantana J, Nishimura KY, Teraji S, Watanabe T, Minemoto T (2019) Examination of relationship between Urbach energy and open-circuit voltage deficit of flexible Cu(In, Ga)Se solar cell for its improved photovoltaic performance. ACS Appl Energy Mater 2(11):7843–7849. https://doi.org/10.1021/acsaem.9b01271

    Article  CAS  Google Scholar 

  48. Chen Y, Xu XL, Zhang GH, Xue H, Ma SY (2009) A comparative study of the microstructures and optical properties of Cu- and Ag-doped ZnO thin films. Phys B 404(20):3645–3649. https://doi.org/10.1016/j.physb.2009.06.051

    Article  CAS  Google Scholar 

  49. Zhao H, Huang F, Hou J, Liu Z, Wu Q, Cao H, Jing Q, Peng S, Cao G (2016) Efficiency enhancement of quantum dot sensitized TiO2/ZnO nanorod arrays solar cells by plasmonic Ag nanoparticles. ACS Appl Mater Interfaces 8(40):26675–26682. https://doi.org/10.1021/acsami.6b06386

    Article  CAS  PubMed  Google Scholar 

  50. Tachibana Y, Hara K, Sayama K, Arakawa H (2002) Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells. Chem Mater 14(6):2527–2535. https://doi.org/10.1021/cm011563s

    Article  CAS  Google Scholar 

  51. Saravanan S, Kato R, Balamurugan M, Kaushik S, Soga T (2017) Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver nanoparticles. J Sci: Adv Mater Dev 2(4):418–424. https://doi.org/10.1016/j.jsamd.2017.10.004

    Article  Google Scholar 

  52. Wang ZS, Kawauchi H, Kashima T, Arakawa H (2004) Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev 248(13–14):1381–1389. https://doi.org/10.1016/j.ccr.2004.03.006

    Article  CAS  Google Scholar 

  53. Ogawa Y, Jäger-Waldau A, Hashimoto Y, Ito K (1994) In2O3/CdS/CuInS2 thin-film solar cell with 9.7% efficiency. Jpn J Appl Phys 33(Part 2, No. 12B):L1775–L1777. https://doi.org/10.1143/JJAP.33.L1775

  54. Sharma JR, Das G, Roy AB, Bose S, Mukhopadhyay S (2020) Design analysis of heterojunction solar cells with aligned AZO nanorods embedded in p-type Si wafer. Silicon 12(2):305–316. https://doi.org/10.1007/s12633-019-00134-4

    Article  CAS  Google Scholar 

  55. Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H (2001) A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Silicon 6:569–570. https://doi.org/10.1039/b010058g

    Article  Google Scholar 

  56. Kim DH, Lee S, Park JH, Noh JH, Park IJ, Seong WM, Hong KS (2011) Transmittance optimized nb-doped TiO2/Sn-doped In2O3 multilayered photoelectrodes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 96:276–280. https://doi.org/10.1016/j.solmat.2011.09.011

    Article  CAS  Google Scholar 

  57. Shen T, Tian J, Lv L, Fei C, Wang Y, Pullerits T, Cao G (2016) Investigation of the role of Mn dopant in CdS quantum dot sensitized solar cell. Electrochim Acta 191:62–69. https://doi.org/10.1016/j.electacta.2016.01.056

    Article  CAS  Google Scholar 

  58. Saha S, Das P, Chakraborty AK, Sarkar S, Debbarma R (2016) Fabrication of DSSC with nanoporous TiO2 film and Kenaf Hibiscus dye as sensitizer. Int J Renew Energy Res 6(2):1–8

    Google Scholar 

  59. Basu K, Benetti D, Zhao H, Jin L, Vetrone F, Vomiero A, Rosei F (2016) Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes. Sci Rep 6(1):23312(1–10). https://doi.org/10.1038/srep23312

  60. Shashanka R, Esgin H, Yilmaz VM, Caglar Y (2020) Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells. J Sci: Adv Mater Dev 5(2):185–191. https://doi.org/10.1016/j.jsamd.2020.04.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors are acknowledged to Central Instrumentation Centre, Tripura University, INDIA for providing FESEM and EDAX facility. The authors also acknowledged to SAIF, IIT Madras for optical measurement facility. The authors thankful to Dr. B. Saha, Assistant Professor, Department of Physics, NIT Agartala, INDIA for providing the XRD measurement facility.

Author information

Authors and Affiliations

Authors

Contributions

Amitabha Nath: methodology, device fabrication, electrical measurements, data analysis, writing—original draft. Naveen Bhati: characterizations and data analysis. Bikram Kishore Mahajan: analysis, writing and editing. Jayanta Kumar Rakshit: validation and editing. Mitra Barun Sarkar: conceptualization, validation, editing and supervision.

Corresponding author

Correspondence to Mitra Barun Sarkar.

Ethics declarations

Ethics Approval

I have followed the ethical principles and accurate references to scientific sources in my original article.

Consent to Participate

Informed consent was obtained from all authors.

Consent for Publication

I consent to the publication of my original research article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, A., Bhati, N., Mahajan, B.K. et al. Silver Nanoparticles Textured Oxide Thin Films for Surface Plasmon Enhanced Photovoltaic Properties. Plasmonics 17, 193–201 (2022). https://doi.org/10.1007/s11468-021-01509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01509-3

Keywords

Navigation