Skip to main content

Advertisement

Log in

How do different nitrogen application levels and irrigation practices impact biological nitrogen fixation and its distribution in paddy system?

  • Original Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Biological nitrogen fixation (BNF) in paddy systems is impacted by nitrogen application levels and irrigation strategies, but the extent to which these factors influence BNF and its distribution in soil and rice is largely unclear. This study investigates this influence.

Methods

An airtight, transparent growth chamber based 15N-labelling system was used to investigate how different nitrogen application levels (0, 125, 187.5 and 250 kg N ha−1) and irrigation strategies (flooding irrigation or intermittent irrigation) impact the amount of BNF and its distribution in soil and rice.

Results

Nitrogen application at 125–250 kg N ha−1 reduced the amount of BNF by 81–86%. The inhibition effect of nitrogen application on BNF at a soil depth of 1–15 cm was greater than that at 0–1 cm. Relative to the continuous flooding irrigation, intermittent irrigation enhanced rice growth and promoted the transfer of fixed nitrogen from 0-1 cm soil layer to rice, but it did not change the total amount of BNF.

Conclusions

This study indicated that BNF supplied little nitrogen for rice production at the high nitrogen application levels, but the intermittent irrigation could promote utilization of biologically fixed nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Bei QC, Liu G, Tang HY, Cadisch G, Rasche F, Xie ZB (2013) Heterotrophic and phototrophic 15N2 fixation and distribution of fixed 15N in a flooded rice–soil system. Soil Biol Biochem 59:25–31

    Article  CAS  Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424

    Article  CAS  PubMed  Google Scholar 

  • Bouffaud ML, Renoud S, Moënne-Loccoz Y, Muller D (2016) Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere? Sci Rep 6:21690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336.Charyulu PBBN, Nayak DN, Rao VR (1981) 15N2 incorporation as influence of rice variety, organic matter and combined nitrogen. Plant Soil 59:399–405

    Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    Article  CAS  PubMed  Google Scholar 

  • Fan KK, Delgado-Baquerizo M, Guo XS, Wang DZ, Wu YY, Zhu M, Yu W, Yao HY, Zhu YG, Chu HY (2019) Suppressed N fixation and diazotrophs after four decades of fertilization. Mirobiome 7:143

    Article  Google Scholar 

  • Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7:e42149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao KS (1998) Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review. J Appl Phycol 10:37–49

    Article  Google Scholar 

  • Großkopf T, LaRoche J (2012) Direct and Indirect Costs of Dinitrogen Fixation in Crocosphaera watsonii WH8501 and Possible Implications for the Nitrogen Cycle. Front Microbiol 3:236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoobs NT, Schimel D (1984) Fire effects on nitrogen mineralization and fixation in mountain shrub and grassland communities. J Range Mamag 37:402–405

    Article  Google Scholar 

  • Inubushi K, Watanabe I (1986) Dynamics of available nitrogen in paddy soils. Soil Sci Plant Nutr 32:561–577

    Article  CAS  Google Scholar 

  • Irisarri P, Gonnet S, Monza J (2001) Cyanobacteria in Uruguayan rice fields: diversity, nitrogen-fixing ability and tolerance to herbicides and combined nitrogen. J Biotechnol 91:95–103

    Article  CAS  PubMed  Google Scholar 

  • Knauth S, Hurek T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733

    Article  CAS  PubMed  Google Scholar 

  • Kox MAR, Lüke C, Fritz C, Elzen E, Alen T, Camp H, Lamers L, Jetten MSM, Ettwig KF (2016) Effects of nitrogen fertilization on diazotrophic activity of microorganisms associated with Sphagnum magellanicum. Plant Soil 406:83–100

    Article  CAS  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252:151–167

    Article  CAS  Google Scholar 

  • Ladha JK, Tirol-Padre A, Reddy CK, Cassman KG, Verma S, Powlson DS, Kessel C, Richter DB, Chakraborty D, Pathak H (2016) Global nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems. Sci Rep 6: 19355

  • Liu C, Cui YM, Li XZ, Yao MJ (2020) Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol 97(2): fiaa255

  • Lu Y, Rosencrantz D, Liesack W, Conrad R (2006) Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol 8:1351–1360

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Bei QC, Wang XJ, Lan P, Liu G, Lin XW, Liu Q, Lin ZB, Liu BJ, Zhang YH, Jin HY, Hu TL, Zhu JG, Xie ZB (2019a) Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system. Sci Total Environ 649:686–694

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Bei QC, Wang XJ, Liu G, Cadisch G, Lin XW, Zhu JG, Sun XL, Xie ZB (2019b) Paddy System with a Hybrid Rice Enhances Cyanobacteria Nostoc and Increases N2 Fixation. Pedosphere 29:374–387

    Article  Google Scholar 

  • Mårtensson L, Díez B, Wartiainen ZWW, EI-Shehawy R, Rasmussen U (2009) Diazotrophic diversity, nifH gene expression and nitrogenase activity in a rice paddy field in Fujian, China. Plant Soil 325:207–218

    Article  CAS  Google Scholar 

  • Nag P, Shriti S, Das S (2019) Microbiological strategies for enhancing biological nitrogen fication in nonlegumes. Journal of Applied Microbiology 1364–5072 Norman JS, Friesen ML (2017) Complex N acquisition by soil diazotrophs: how the ability to release exoenzymes affects N fixation by terrestrial free-living diazotrophs. ISME J 11:315–326

    Google Scholar 

  • Ohyama T, Kumazawa K (1981) A simple method for the preparation, purification and storage of15N2gas for biological nitrogen fixation studies. Soil Sci Plant Nutr 27:263–265

    Article  CAS  Google Scholar 

  • Patra AK, Le Roux X, Abbadie L, Clays-Josserand A, Poly F, Loiseau P, Louault F (2007) Effect of microbial activity and nitrogen mineralization on free-living nitrogen fixation in permanent grassland soils. J Agron Crop Sci 193:153–156

    Article  CAS  Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbiere F, Monrozier LJ (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol 67:2255–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao VR, Rao JLN (1984) Nitrogen fixation (C2H2 reduction) in soil samples from rhizosphere of rice grown under alternate flooded and nonflooded conditions. Plant Soil 81:111–118

    Article  CAS  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Roger PA, Watanabe I (1996) Technologies for utilizing biological nitrogen fixation in wetland rice: potentialities, current usage, and limiting factors. Fertilizer Res 9:39–77

    Article  Google Scholar 

  • Rosenblueth M, Ormeño-Orrillo E, López-López A, Rogel MA, Reyes-Hernández BJ, Martinez-Romero JC, Reddy PM, Martinez-Romero EM (2018) Nitrogen fixation in cereals. Front Microbiol 9:1794

    Article  PubMed  PubMed Central  Google Scholar 

  • Santiago-Ventura BM, Daez C, Ventura V, Watanabe I, App AA (1986) Effects of N-fertilizers, straw, and dry fallow on the nitrogen balance of a flooded soil planted with rice. Plant Soil 93:405–411

    Article  Google Scholar 

  • Scherer S, Ernst A, Chen TW, Böger P (1984) Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia 62:418–423

    Article  PubMed  Google Scholar 

  • Smercina DN, Evans SE, Friesen ML, Tiemann LK (2019) To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Appl Environ Microbiol 85(6):e02546-e2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadakatsu Y, Junko TT, Kiwamu M (2017) Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: a review and synthesis. Soil Sci Plant Nutr 63(6):578–590

    Article  CAS  Google Scholar 

  • Tan ZY, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Valiente EF, Ucha A, Quesada A, Leganes F, Carreres R (2000) Contribution of N2 fixing cyanobacteria to rice production: availability of nitrogen from 15N-labelled cyanobacteria and ammonium sulphate to rice. Plant Soil 221:107–112

    Article  CAS  Google Scholar 

  • Wang XJ, Liu BJ, Ma J, Zhang YH, Hu TL, Zhang H, Feng YC, Pan HL, Xu ZW, Liu G, Lin XW, Zhu JG, Bei QC, Xie ZB (2019) Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China. Soil Biol Biochem 131:81–89

    Article  CAS  Google Scholar 

  • Wang XJ, Bei QC, Yang W, Zhang H, Hao JL, Li Q, Feng YC, Xie ZB (2020) Unveiling of active diazotrophs in a flooded rice soil by combination of NanoSIMS and 15N2-DNA-stable isotope probing. Biol Fertil Soils 56:1189–1199

    Article  CAS  Google Scholar 

  • Wang YN, Ke XB, Wu LQ, Lu YH (2009) Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Syst Appl Microbiol 32(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Yamamuro S (1986) Behavior of nitrogen in paddy soils. Jpn Agric Res Q 20:100–107

    CAS  Google Scholar 

  • Yoshida T, Ancajas RR (1971) Nitrogen fixation by bacteria in the root zone of rice. Soil Sci Soc Amer Proc 35:156–158

    Article  CAS  Google Scholar 

  • Zehr JP, McPeynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528(7580):51–59

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang LM, Zheng YM, Di HJ (2008) Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J Soils Sediments 8(6):406–414

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31870500 and 41501273), and the Special Project on the Basis of the National Science and Technology of China (2015FY110700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubin Xie.

Additional information

Responsible Editor: Euan K. James.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1095 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hu, T., Wang, H. et al. How do different nitrogen application levels and irrigation practices impact biological nitrogen fixation and its distribution in paddy system?. Plant Soil 467, 329–344 (2021). https://doi.org/10.1007/s11104-021-05093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05093-7

Keywords

Navigation