Skip to main content
Log in

Violation of quark–hadron duality

The missing oscillation in the OPE

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The origin of quark–hadron duality violations (DVs) can be related to the singularities of the Laplace transform of the spectral function. With the help of rather generic properties of the large-\(N_c\) approximation and a generalized form for the radial trajectories found in Regge Theory, we may locate these singularities in the complex plane and obtain an expression for the DVs which turns out to agree with general expectations. Using the two-point vector correlator as a test laboratory, we show how the usual dispersion relation may give rise to perturbation theory, the power corrections from the condensate expansion and DVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In what follows, we will consider the perturbative expansion as the OPE contribution from the unit operator.

  2. We will simplify our world by taking the chiral limit.

  3. For simplicity, we are normalizing the parton model contribution to unity.

  4. Even if we consider the log corrections in the \(b_n\) coefficients, at high enough \(q^2\), a finite number of these power corrections cannot give rise to the oscillations commonly seen in the spectral data.

  5. In fact, to fulfill the reality property \(\mathcal {A}({q^2}^*)=\mathcal {A}(q^2)^*\), one should rotate \(\sigma \) clockwise for \(\mathrm {Im}\, q^2>0\) and anti-clockwise for \(\mathrm {Im}\, q^2<0\).

  6. We will assume that \(e^{\sigma q^2}\sigma \, \mathcal {B}^{[\rho ]}(\sigma )\) always falls off for to zero for \(|q^2|\rightarrow \infty \).

  7. In this context, \(N_c=3\) is large enough.

  8. We will use these units for the rest of this article.

  9. Expressions such as (14) are known as a Dirichlet series [17]. To our knowledge the first paper to connect these series to large-\(N_c\) QCD was Ref. [18].

  10. This expression says that perturbation theory is the part of the large-\(q^2\) expansion which depends solely on powers of \(\log (-q^2)\).

  11. Recall that our momentum is in units of \(\Lambda _{QCD}\).

References

  1. See, e.g., S. Peris, M. Perrottet, E. de Rafael, JHEP 05, 011 (1998). https://doi.org/10.1088/1126-6708/1998/05/011. arXiv:hep-ph/9805442 [hep-ph]

  2. M.A. Shifman, Int. J. Mod. Phys. A 11, 3195 (1996). arXiv:hep-ph/9511469

    Article  ADS  Google Scholar 

  3. B. Blok, M.A. Shifman, D.X. Zhang, Phys. Rev. D 57, 2691 (1998). https://doi.org/10.1103/PhysRevD.57.2691, https://doi.org/10.1103/PhysRevD.59.019901. arXiv:hep-ph/9709333 [Erratum: Phys. Rev. D 59, 019901 (1999)]

  4. M.A. Shifman, in At the frontier of particle physics, vol. 3 (World Scientific, 2001), pp. 1447–1494. arXiv:hep-ph/0009131

  5. E.C. Poggio, H.R. Quinn, S. Weinberg, Phys. Rev. D 13, 1958 (1976). https://doi.org/10.1103/PhysRevD.13.1958

    Article  ADS  Google Scholar 

  6. M. Shifman, eConf C030614, 001 (2003) (WQCD-2003-001, and references therein)

  7. D. Boito, I. Caprini, M. Golterman, K. Maltman, S. Peris, Phys. Rev. D 97(5), 054007 (2018). https://doi.org/10.1103/PhysRevD.97.054007. arXiv:1711.10316 [hep-ph]

  8. See, for example, I. Aniceto, G. Basar, R. Schiappa, Phys. Rept. 809, 1–135 (2019). https://doi.org/10.1016/j.physrep.2019.02.003. arXiv:1802.10441 [hep-th]

  9. T.M. Seara, D. Sauzin, Resumació de Borel i Teoria de la Ressurgencia (in Catalan). Butll. Soc. Catalana Mat. 18, 129 (2003)

    Google Scholar 

  10. B. Candelpergher et al., Approche de la résurgence, Actualités Mathématiques. Hermann edit., in particular section “Commentaire 1: Sommation de Borel.” For a rather exhaustive treatise, see O. Costin, Asymptotics and Borel Summability. Chapman and Hall, CRC, Boca Raton (1993) (in particular, section 4.4d)

  11. G.t. Hooft, Nucl. Phys. B 75, 461 (1974)

  12. C.G. Callan Jr., N. Coote, D.J. Gross, Phys. Rev. D 13, 1649 (1976)

    Article  ADS  Google Scholar 

  13. See, for example, M. Shifman, A. Vainshtein, Phys. Rev. D 77, 034002 (2008). arXiv:0710.0863 [hep-ph] (and references therein)

  14. See, for example, P. Masjuan, E. Ruiz Arriola, W. Broniowski, Phys. Rev. D 85, 094006 (2012). arXiv:1203.4782 [hep-ph]

  15. V.A. Fateev, S.L. Lukyanov, A.B. Zamolodchikov, J. Phys. A 42, 304012 (2009). arXiv:0905.2280 [hep-th]

  16. P. Flajolet et al., Theor. Comput. Sci. 144, 3 (1995)

    Article  Google Scholar 

  17. See, for example, G.H. Hardy, M. Riesz, The General Theory of Dirichlet’s Series, Cambridge Tracts in Mathematics and Mathematical Physics (Cambridge University Press, 1915). A useful summary can be found in https://en.wikipedia.org/wiki/General_Dirichlet_series, https://en.wikipedia.org/wiki/Dirichlet_series

  18. E. de Rafael, Nucl. Phys. Proc. Suppl. 207–208, 290 (2010). arXiv:1010.4657 [hep-th]

    Article  Google Scholar 

  19. D. Boito, M. Jamin, R. Miravitllas, Phys. Rev. Lett. 117(15), 152001 (2016). https://doi.org/10.1103/PhysRevLett.117.152001. arXiv:1606.06175 [hep-ph]

  20. L.S. Brown, L.G. Yaffe, C.X. Zhai, Phys. Rev. D 46, 4712 (1992). https://doi.org/10.1103/PhysRevD.46.4712. arXiv:hep-ph/9205213

  21. G. ’t Hooft, Nucl. Phys. B 72, 461 (1974) [B73 (1974) 461]

  22. E. Witten, Nucl. Phys. B 79, 57 (1979)

    Article  ADS  Google Scholar 

  23. O. Catà, M. Golterman, S. Peris, JHEP 0508, 076 (2005). arXiv:hep-ph/0506004

  24. O. Catà, M. Golterman, S. Peris, Phys. Rev. D 77, 093006 (2008). arXiv:0803.0246 [hep-ph]

  25. D. Boito, O. Catà, M. Golterman, M. Jamin, K. Maltman, J. Osborne, S. Peris, Phys. Rev. D 84, 113006 (2011). arXiv:1110.1127 [hep-ph]

  26. D. Boito, M. Golterman, M. Jamin, A. Mahdavi, K. Maltman, J. Osborne, S. Peris, Phys. Rev. D 85, 093015 (2012). arXiv:1203.3146 [hep-ph]

  27. D. Boito, M. Golterman, K. Maltman, J. Osborne, S. Peris, Phys. Rev. D 91, 034003 (2015). arxiv:1410.3528 [hep-ph]

  28. D. Boito, M. Golterman, K. Maltman, S. Peris, M. V. Rodrigues, W. Schaaf, Phys. Rev. D 103(3), 034028 (2021). https://doi.org/10.1103/PhysRevD.103.034028. arXiv:2012.10440 [hep-ph]

Download references

Acknowledgements

I am very grateful to D. Boito, I. Caprini, M. Golterman and K. Maltman for innumerable discussions on DVs and a pleasant collaboration. Work supported by CICYTFEDER-FPA2017-86989-P and by Grant No. 2017 SGR 1069. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Peris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peris, S. Violation of quark–hadron duality. Eur. Phys. J. Spec. Top. 230, 2691–2698 (2021). https://doi.org/10.1140/epjs/s11734-021-00255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00255-1

Navigation