Skip to main content
Log in

Machine learning workflow for microparticle composite thin-film process–structure linkages

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Microparticle composite thin films (MCTFs) have applications in a variety of fields, ranging from water filtration, to advanced energy storage, to medical devices. Variations in processing parameters during casting and solidification have been demonstrated to lead to morphological and therefore property changes in the final film. However, the wide range and number of possible combinations of parameters can make robust process–structure (PS) linkages a complex problem. Material informatics has shown to be well suited for developing PS linkages in other materials, but there are challenges that must first be addressed for MCTFs given the lack of separation between the characteristic length scales of the microstructure (i.e., particles, pores, etc.) and the film thickness. The objective of this work is to identify reduced-order spatial models and machine learning algorithms to address these problems. To achieve this, simulated microstructures of microparticle distributions based upon slot die coating simulations have been generated. Reduced-order representations of the microstructures were then created to capture variation in the microstructure across small slices through thickness of the film using two-point particle autocorrelation statistics and principal component analysis. Results showed that predictive PS linkages can be created using Gaussian process regression between the final film morphology and processing parameters; however, image size must be considered to ensure convergence in spatial statistics to increase accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yin, J, Deng, B, “Polymer-Matrix Nanocomposite Membranes for Water Treatment.” J. Membr. Sci., 479 256–275 (2015)

    Article  CAS  Google Scholar 

  2. Kim, J, Van Der Bruggen, B, “The Use of Nanoparticles in Polymeric and Ceramic Membrane Structures: Review of Manufacturing Procedures and Performance Improvement for Water Treatment.” Environ. Pollut., 158 (7) 2335–2349 (2010)

    Article  CAS  Google Scholar 

  3. Chou, W-L, Yu, D-G, Yang, M-C, “The Preparation and Characterization of Silver-Loading Cellulose Acetate Hollow Fiber Membrane for Water Treatment.” Polym. Adv. Technol., 16 (8) 600–607 (2005)

    Article  CAS  Google Scholar 

  4. Srivastava, S, Schaefer, JL, Yang, Z, Tu, Z, Archer, LA, “25th Anniversary Article: Polymer-Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage.” Adv. Mater., 26 (2) 201–234 (2014)

    Article  CAS  Google Scholar 

  5. Wengeler, L, Schmidt-Hansberg, B, Peters, K, Scharfer, P, Schabel, W, “Investigations on Knife and Slot Die Coating and Processing of Polymer Nanoparticle Films for Hybrid Polymer Solar Cells.” Chem. Eng. Process. Process Intensif., 50 (5–6) 478–482 (2011)

    Article  CAS  Google Scholar 

  6. Choi, K-J, Lee, J-Y, Shin, D-K, Park, J, “Investigation on Slot-Die Coating of Hybrid Material Structure for OLED Lightings.” J. Phys. Chem. Solids, 95 119–128 (2016)

    Article  CAS  Google Scholar 

  7. Lee, S, Koo, J, Kang, SK, Park, G, Lee, YJ, Chen, YY, Lim, SA, Lee, KM, Rogers, JA, “Metal Microparticle - Polymer Composites as Printable, Bio/ecoresorbable Conductive Inks.” Mater. Today, 21 (3) 207–215 (2018)

    Article  CAS  Google Scholar 

  8. Salernitano, E, Migliaresi, C, “Composite Materials for Biomedical Applications: A Review.” J. Appl. Biomater. Biomech., 1 3–18 (2003)

    CAS  Google Scholar 

  9. Chen, L-C, Liu, D, Liu, T-J, Tiu, C, Yang, C-R, Chu, W-B, Wan, C-C, “Improvement of Lithium-Ion Battery Performance Using a Two-Layered Cathode by Simultaneous Slot-Die Coating.” J. Energy Storage, 5 156–162 (2016)

    Article  Google Scholar 

  10. Park, J, Shin, K, Lee, C, “Optimized Design for Anti-reflection Coating Process in Roll-to-Roll Slot-Die Coating System.” Robot. Comput. Integr. Manuf., 30 (5) 432–441 (2014)

    Article  Google Scholar 

  11. Pryamitsyn, V, Ganesan, V, “Origins of Linear Viscoelastic Behavior of Polymer−Nanoparticle Composites.” Macromolecules, 39 (2) 844–856 (2006)

    Article  CAS  Google Scholar 

  12. Cho, S-D, Lee, J-Y, Paik, K-W, “Effects of Particle Size on Dielectric Constant and Leakage Current of Epoxy/Barium Titanate (BaTiO/sub3/) Composite Films for Embedded Capacitors.” In: Advances in Electronic Materials and Packaging 2001 (Cat. No.01EX506) (2001)

  13. Jancar, J, Douglas, JF, Starr, FW, Kumar, SK, Cassagnau, P, Lesser, AJ, Sternstein, SS, Buehler, MJ, “Current Issues in Research on Structure–Property Relationships in Polymer Nanocomposites.” Polymer, 51 (15) 3321–3343 (2010)

    Article  CAS  Google Scholar 

  14. Cardinal, CM, Jung, YD, Ahn, KH, Francis, LF, “Drying Regime Maps for Particulate Coatings.” AIChE J., 56 (11) 2769–2780 (2010)

    Article  CAS  Google Scholar 

  15. Akbarzadeh, V, Hrymak, AN, “Coupled Fluid-Particle Modeling of a Slot Die Coating System.” AIChE J., 62 (6) 1933–1939 (2016)

    Article  CAS  Google Scholar 

  16. Dzinun, H, Othman, MHD, Ismail, AF, Puteh, MH, Rahman, MA, Jaafar, J, “Morphological Study of Co-Extruded Dual-Layer Hollow Fiber Membranes Incorporated with Different TiO2 Loadings.” J. Membr. Sci., 479 123–131 (2015)

    Article  CAS  Google Scholar 

  17. Guillen, GR, Pan, Y, Li, M, Hoek, EMV, “Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review.” Ind. Eng. Chem. Res., 50 (7) 3798–3817 (2011)

    Article  CAS  Google Scholar 

  18. Baesch, S, Price, K, Scharfer, P, Francis, L, Schabel, W, “Influence of the Drying Conditions on the Particle Distribution in Particle Filled Polymer Films: Experimental Validation of Predictive Drying Regime Maps.” Chem. Eng. Process. Process Intensif., 123 138–147 (2018)

    Article  CAS  Google Scholar 

  19. Chu, W-B, Yang, J-W, Wang, Y-C, Liu, T-J, Tiu, C, Guo, J, “The Effect of Inorganic Particles on Slot Die Coating of Poly(vinyl alcohol) Solutions.” J. Colloid Interface Sci., 297 (1) 215–225 (2006)

    Article  CAS  Google Scholar 

  20. Campana, DM, Valdez Silva, LD, Carvalho, MS, “Slot Coating Flows of Non-colloidal Particle Suspensions.” AIChE J., 63 (3) 1122–1131 (2017)

    Article  Google Scholar 

  21. Rebouças, RB, Siqueira, IR, Carvalho, MS, “Slot Coating Flow of Particle Suspensions: Particle Migration in Shear Sensitive Liquids.” J. Non-Newton. Fluid Mech., 258 22–31 (2018)

    Article  Google Scholar 

  22. Siqueira, IR, Carvalho, MS, “A Computational Study of the Effect of Particle Migration on the Low-Flow Limit in Slot Coating of Particle Suspensions.” J. Coat. Technol. Res., 16 1619–1628 (2019)

    Article  Google Scholar 

  23. Siqueira, IR, Rebouças, RB, Carvalho, MS, “Particle Migration and Alignment in Slot Coating Flows of Elongated Particle Suspensions.” AIChE J., 63 (7) 3187–3198 (2017)

    Article  CAS  Google Scholar 

  24. Agrawal, A, Choudhary, A, “Perspective: Materials Informatics and Big Data: Realization of the “Fourth Paradigm” of Science in Materials Science.” APL Mater., 4 (5) 053208 (2016)

    Article  Google Scholar 

  25. Hill, J, Mulholland, G, Persson, K, Seshadri, R, Wolverton, C, Meredig, B, “Materials Science with Large-Scale Data and Informatics: Unlocking New Opportunities.” MRS Bull., 41 (5) 399–409 (2016)

    Article  CAS  Google Scholar 

  26. Jain, A, Hautier, G, Ong, SP, Persson, K, “New Opportunities for Materials Informatics: Resources and Data Mining Techniques for Uncovering Hidden Relationships.” J. Mater. Res., 31 (8) 977–994 (2016)

    Article  CAS  Google Scholar 

  27. Jose, R, Ramakrishna, S, “Materials 4.0: Materials Big Data Enabled Materials Discovery.” Appl. Mater. Today, 10 127–132 (2018)

    Article  Google Scholar 

  28. Rajan, K, “Materials Informatics: The Materials “Gene” and Big Data.” Annu. Rev. Mater. Res., 45 (1) 153–169 (2015)

    Article  CAS  Google Scholar 

  29. Ferguson, AL, “Machine Learning and Data Science in Soft Materials Engineering.” J. Phys. Condens. Matter, 30 (4) 043002 (2018)

    Article  Google Scholar 

  30. Ramprasad, R, Batra, R, Pilania, G, Mannodi-Kanakkithodi, A, Kim, C, “Machine Learning in Materials Informatics: Recent Applications and Prospects.” NPJ Comput. Mater., 3 (1) 54 (2017)

    Article  Google Scholar 

  31. Lookman, T, Balachandran, PV, Xue, D, Hogden, J, Theiler, J, “Statistical Inference and Adaptive Design for Materials Discovery.” Curr. Opin. Solid State Mater. Sci., 21 (3) 121–128 (2017)

    Article  CAS  Google Scholar 

  32. Sun, Y, Voorhees, PW, Shahani, A, Cecen, A, Gibbs, JW, Kalidindi, SR, Xiao, X, “Solidification in 4D: From Dendrites to Eutectics.” Microsc. Microanal., 23 (11) 320–321 (2017)

    Article  Google Scholar 

  33. Moot, T, Isayev, O, Call, RW, Mccullough, SM, Zemaitis, M, Lopez, R, Cahoon, JF, Tropsha, A, “Material Informatics Driven Design and Experimental Validation of Lead Titanate as an Aqueous Solar Photocathode.” Mater. Discov., 6 9–16 (2016)

    Article  Google Scholar 

  34. Gupta, A, Cecen, A, Goyal, S, Singh, AK, Kalidindi, SR, “Structure–Property Linkages Using a Data Science Approach: Application to a Non-metallic Inclusion/Steel Composite System.” Acta Mater., 91 239–254 (2015)

    Article  CAS  Google Scholar 

  35. Wargo, EA, Hanna, AC, Çeçen, A, Kalidindi, SR, Kumbur, EC, “Selection of Representative Volume Elements for Pore-Scale Analysis of Transport in Fuel Cell Materials.” J. Power Sources, 197 168–179 (2012)

    Article  CAS  Google Scholar 

  36. Altschuh, P, Yabansu, YC, Hötzer, J, Selzer, M, Nestler, B, Kalidindi, SR, “Data Science Approaches for Microstructure Quantification and Feature Identification in Porous Membranes.” J. Membr. Sci., 540 88–97 (2017)

    Article  CAS  Google Scholar 

  37. Fullwood, DT, Niezgoda, SR, Adams, BL, Kalidindi, SR, “Microstructure Sensitive Design for Performance Optimization.” Prog. Mater. Sci., 55 (6) 477–562 (2010)

    Article  CAS  Google Scholar 

  38. Mcdowell, DL, Choi, HJ, Panchal, J, Austin, R, Allen, J, Mistree, F, “Plasticity-Related Microstructure-Property Relations for Materials Design.” Key Eng. Mater., 340–341 21–30 (2007)

    Article  Google Scholar 

  39. Steinberger, D, Gatti, R, Sandfeld, S, “A Universal Approach Towards Computational Characterization of Dislocation Microstructure.” JOM, 68 (8) 2065–2072 (2016)

    Article  Google Scholar 

  40. Kaspi, O, Yosipof, A, Senderowitz, H, “RANdom SAmple Consensus (RANSAC) Algorithm for Material-Informatics: Application to Photovoltaic Solar Cells.” J. Cheminform., 9 (1) 1–15 (2017)

    Article  Google Scholar 

  41. Brough, DB, Wheeler, D, Warren, JA, Kalidindi, SR, “Microstructure-Based Knowledge Systems for Capturing Process-Structure Evolution Linkages.” Curr. Opin. Solid State Mater. Sci., 21 (3) 129–140 (2017)

    Article  CAS  Google Scholar 

  42. Cecen, A, Fast, T, Kalidindi, SR, “Versatile Algorithms for the Computation of 2-Point Spatial Correlations in Quantifying Material Structure.” Integr. Mater. Manuf. Innov., 5 1–15 (2016)

    Article  Google Scholar 

  43. Latypov, MI, Kühbach, M, Beyerlein, IJ, Stinville, J-C, Toth, LS, Pollock, TM, Kalidindi, SR, “Application of Chord Length Distributions and Principal Component Analysis for Quantification and Representation of Diverse Polycrystalline Microstructures.” Mater. Charact., 145 671–685 (2018)

    Article  CAS  Google Scholar 

  44. Yang, Z, Yabansu, YC, Al-Bahrani, R, Liao, W-K, Choudhary, AN, Kalidindi, SR, Agrawal, A, “Deep Learning Approaches for Mining Structure-Property Linkages in High Contrast Composites from Simulation Datasets.” Comput. Mater. Sci., 151 278–287 (2018)

    Article  CAS  Google Scholar 

  45. Torquato, S, Haslach, H, Jr, “Random Heterogeneous Materials: Microstructure and Macroscopic Properties.” Appl. Mech. Rev., 55 (4) B62–B63 (2002)

    Article  Google Scholar 

  46. Jung, J, Yoon, JI, Park, HK, Kim, JY, Kim, HS, “An Efficient Machine Learning Approach to Establish Structure-Property Linkages.” Comput. Mater. Sci., 156 17–25 (2019)

    Article  Google Scholar 

  47. Rasmussen, CE, Williams, CKI, Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  48. Simmons, JP, Bouman, CA, De Graef, M, Drummy, LF, Jr, Drummy, LF, Statistical Methods for Materials Science: The Data Science of Microstructure Characterization. Taylor & Francis Group, Milton (2019)

    Book  Google Scholar 

  49. Mathworks. Gaussian Process Regression. 2020 [cited 2020 December 12th]; R2020b:[Available from: https://www.mathworks.com/help/stats/gaussian-process-regression.html?s_tid=CRUX_lftnav.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Griffiths.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented at the 2020 International Society of Coatings Science and Technology Conference that was held virtually September 20–23, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffiths, P.R., Harris, T.A.L. Machine learning workflow for microparticle composite thin-film process–structure linkages. J Coat Technol Res 19, 83–96 (2022). https://doi.org/10.1007/s11998-021-00512-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00512-x

Keywords

Navigation