Skip to main content
Log in

Adaptive chaotic spherical evolution algorithm

  • Regular research paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Nature-inspired metaheuristic algorithms are often based on the first-order difference hypercube search style to search for optimum solutions. In contrast, the spherical evolution algorithm (SE) employs a spherical search style. SE is very effective; however, there is still room for improvement. In this study, we added a chaotic local search (CLS) to the SE to improve its performance. This CLS uses information from several chaotic maps and records each instance of success. The recorded historical success information guides the CLS to choose the chaotic map for the next iteration. In our experiment, we compare the chaotic spherical evolution algorithm (CSE) with the original SE and other metaheuristic algorithms. The test set consists of 29 benchmark functions from the CEC2017 benchmark set and 22 real-world optimization problems from the CEC2011 set. Additionally, the new parameter introduced in the CSE has also been briefly discussed. Experimental results indicate that the proposed CSE significantly performs better than its competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37(8):5682–5687

    Article  Google Scholar 

  2. Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40(4):1715–1734

    Article  MathSciNet  MATH  Google Scholar 

  3. Awad N, Ali M, Liang J, Qu B, Suganthan P (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Tech Rep

  4. BoussaïD I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  MATH  Google Scholar 

  5. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut Comput 10(6):646–657

    Article  Google Scholar 

  6. Cao Z, Shi Y, Rong X, Liu B, Du Z, Yang B (2015) Random grouping brain storm optimization algorithm with a new dynamically changing step size. In: International Conference in Swarm Intelligence, Springer, pp. 357–364

  7. Caponetto R, Fortuna L, Fazzino S, Xibilia MG (2003) Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evolut Comput 7(3):289–304

    Article  Google Scholar 

  8. Carrasco J, García S, Rueda M, Das S, Herrera F (2020) Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review. Swarm Evolut Comput 54:100665

  9. Cheng J, Yuan G, Zhou M, Gao S, Liu C, Duan H, Zeng Q (2020) Accessibility analysis and modeling for IoV in an Urban scene. IEEE Trans Vehicular Technol 69(4):4246–4256

    Article  Google Scholar 

  10. Cheng JJ, Yuan GY, Zhou MC, Gao S, Huang ZH, Liu C (2020) A connectivity prediction-based dynamic clustering model for VANET in an urban scene. IEEE Internet Things J 7(9):8410–8418

    Article  Google Scholar 

  11. Choi C, Lee JJ (1998) Chaotic local search algorithm. Artif Life Robotics 2(1):41–47

    Article  Google Scholar 

  12. Coelho LS, Mariani VC (2006) Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Trans Power Syst 21(2):989–996

    Article  Google Scholar 

  13. Črepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surveys (CSUR) 45(3):1–33

    Article  MATH  Google Scholar 

  14. Das S, Suganthan PN (2010) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata pp 341–359

  15. Del Ser J, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Camacho D, Das S, Suganthan PN, Coello CAC, Herrera F (2019) Bio-inspired computation: Where we stand and whats next. Swarm Evolut Comput 48:220–250

    Article  Google Scholar 

  16. Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A (2019) A survey on new generation metaheuristic algorithms. Comput Ind Eng 137:106040

    Article  Google Scholar 

  17. Gandomi AH, Yang XS (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232

    Article  MathSciNet  Google Scholar 

  18. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numerical Simulation 18(1):89–98

    Article  MathSciNet  MATH  Google Scholar 

  19. Gandomi AH, Yun GJ, Yang XS, Talatahari S (2013) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simulation 18(2):327–340

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao S, Wang W, Dai H, Li F, Tang Z (2008) Improved clonal selection algorithm combined with ant colony optimization. IEICE Trans Inf Syst 91(6):1813–1823

    Article  Google Scholar 

  21. Gao S, Vairappan C, Wang Y, Cao Q, Tang Z (2014) Gravitational search algorithm combined with chaos for unconstrained numerical optimization. Appl Math Comput 231:48–62

    MathSciNet  MATH  Google Scholar 

  22. Gao S, Wang Y, Cheng J, Inazumi Y, Tang Z (2016) Ant colony optimization with clustering for solving the dynamic location routing problem. Appl Math Comput 285:149–173

    MathSciNet  MATH  Google Scholar 

  23. Gao S, Wang Y, Wang J, Cheng J (2017) Understanding differential evolution: a Poisson law derived from population interaction network. J Comput Sci 21:140–149

    Article  Google Scholar 

  24. Gao S, Song S, Cheng J, Todo Y, Zhou M (2018) Incorporation of solvent effect into multi-objective evolutionary algorithm for improved protein structure prediction. IEEE/ACM Trans Comput Biol Bioinf 15(4):1365–1378

    Article  Google Scholar 

  25. Gao S, Yu Y, Wang Y, Wang J, Cheng J, Zhou M (2021) Chaotic local search-based differential evolution algorithms for optimization. IEEE Trans Syst Man Cybern Syst 51(6):3954–3967

    Article  Google Scholar 

  26. Gao S, Zhou M, Wang Y, Cheng J, Yachi H, Wang J (2019) Dendritic neural model with effective learning algorithms for classification, approximation, and prediction. IEEE Trans Neural Networks Learn Syst 30(2):601–614

    Article  Google Scholar 

  27. Gao S, Wang K, Tao S, Jin T, Dai H, Cheng J (2021) A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Convers Manag 230:113784

    Article  Google Scholar 

  28. Gong YJ, Li JJ, Zhou Y, Li Y, Chung HSH, Shi YH, Zhang J (2015) Genetic learning particle swarm optimization. IEEE Trans Cybern 46(10):2277–2290

    Article  Google Scholar 

  29. Han F, Wang Z, Du Y, Sun X, Zhang B (2015) Robust synchronization of bursting hodgkin-huxley neuronal systems coupled by delayed chemical synapses. Int J of Non-Linear Mech 70:105–111

    Article  Google Scholar 

  30. Han F, Gu X, Wang Z, Fan H, Cao J, Lu Q (2018) Global firing rate contrast enhancement in e/i neuronal networks by recurrent synchronized inhibition. Chaos Interdiscip J Nonlinear Sci 28(10):106324

    Article  MathSciNet  Google Scholar 

  31. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  Google Scholar 

  32. Ji J, Gao S, Wang S, Tang Y, Yu H, Todo Y (2017) Self-adaptive gravitational search algorithm with a modified chaotic local search. IEEE Access 5:17881–17895

    Article  Google Scholar 

  33. Jordehi AR (2015) A chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problems. Neural Comput Appl 26(4):827–833

    Article  Google Scholar 

  34. Lei Z, Gao S, Gupta S, Cheng J, Yang G (2020) An aggregative learning gravitational search algorithm with self-adaptive gravitational constants. Expert Systems with Applications. p. 113396

  35. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evolut Comput 10(3):281–295

    Article  Google Scholar 

  36. Liu XF, Zhan ZH, Gao Y, Zhang J, Kwong S, Zhang J (2018) Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization. IEEE Trans Evolut Comput 23(4):587–602

    Article  Google Scholar 

  37. Lu Y, Zhou J, Qin H, Wang Y, Zhang Y (2011) Chaotic differential evolution methods for dynamic economic dispatch with valve-point effects. Eng Appl Artif Intell 24(2):378–387

    Article  Google Scholar 

  38. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based Syst 96:120–133

    Article  Google Scholar 

  39. Mitić M, Vuković N, Petrović M, Miljković Z (2015) Chaotic fruit fly optimization algorithm. Knowledge-Based Syst 89:446–458

    Article  Google Scholar 

  40. Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local search. IEEE Trans Evolut Comput 12(1):107–125

    Article  Google Scholar 

  41. Qin AK, Huang VL, Suganthan PN (2008) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transn Evolut Comput 13(2):398–417

    Article  Google Scholar 

  42. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  43. Sun J, Gao S, Dai H, Cheng J, Zhou M, Wang J (2020) Bi-objective elite differential evolution for multivalued logic networks. IEEE Trans Cybern 50(1):233–246

    Article  Google Scholar 

  44. Sun Y, Xue B, Zhang M, Yen GG, Lv J (2020) Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Trans Cybern 50(9):3840–3854

    Article  Google Scholar 

  45. Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation, IEEE, pp. 71–78

  46. Tang D (2019) Spherical evolution for solving continuous optimization problems. Appl Soft Comput 81:105499

    Article  Google Scholar 

  47. Telikani A, Gandomi AH, Shahbahrami A (2020) A survey of evolutionary computation for association rule mining. Inf Sci 524:318–352

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  49. Wang GG, Deb S, Gandomi AH, Zhang Z, Alavi AH (2016) Chaotic cuckoo search. Soft Comput 20(9):3349–3362

    Article  Google Scholar 

  50. Wang Y, Gao S, Yu Y, Xu Z (2019) The discovery of population interaction with a power law distribution in brain storm optimization. Memetic Comput 11:65–87

    Article  Google Scholar 

  51. Wang Y, Yu Y, Gao S, Pan H, Yang G (2019) A hierarchical gravitational search algorithm with an effective gravitational constant. Swarm Evolut Comput 46:118–139

  52. Wang Y, Yu Y, Cao S, Zhang X, Gao S (2020) A review of applications of artificial intelligent algorithms in wind farms. Artif Intell Rev 53(5):3447–3500

    Article  Google Scholar 

  53. Wang Y, Gao S, Zhou M, Yu Y (2021) A multi-layered gravitational search algorithm for function optimization and real-world problems. IEEE/CAA J Automatica Sinica 8(1):1–16

    Article  Google Scholar 

  54. Wang ZJ, Zhan ZH, Lin Y, Yu WJ, Wang H, Kwong S, Zhang J (2019) Automatic niching differential evolution with contour prediction approach for multimodal optimization problems. IEEE Trans Evolut Comput 24(1):114–128

    Article  Google Scholar 

  55. Wang ZJ, Zhan ZH, Kwong S, Jin H, Zhang J (2020) Adaptive granularity learning distributed particle swarm optimization for large-scale optimization. IEEE Trans Cybern 51:1175–1188

    Article  Google Scholar 

  56. Yang XS (2020) Nature-inspired optimization algorithms: challenges and open problems. J Comput Sci 46:101104

    Article  MathSciNet  Google Scholar 

  57. Yu Y, Gao S, Cheng S, Wang Y, Song S, Yuan F (2017) CBSO: a memetic brain storm optimization with chaotic local search. Memetic Comput 10(4):353–367

    Article  Google Scholar 

  58. Yu Y, Gao S, Wang Y, Cheng J, Todo Y (2018) ASBSO: an improved brain storm optimization with flexible search length and memory-based selection. IEEE Access 6:36977–36994

    Article  Google Scholar 

  59. Yu Y, Gao S, Wang Y, Todo Y (2018) Global optimum-based search differential evolution. IEEE/CAA J Automatica Sinica 6(2):379–394

    Article  Google Scholar 

  60. Yu Y, Gao S, Wang Y, Lei Z, Cheng J, Todo Y (2019) A multiple diversity-driven brain storm optimization algorithm with adaptive parameters. IEEE Access 7:126871–126888

    Article  Google Scholar 

  61. Zhan ZH, Zhang J, Li Y, Shi YH (2010) Orthogonal learning particle swarm optimization. IEEE Trans Evolut Comput 15(6):832–847

    Article  Google Scholar 

  62. Zhan ZH, Wang ZJ, Jin H, Zhang J (2019) Adaptive distributed differential evolution. IEEE Trans Cybern 50(11):4633–4647

    Article  Google Scholar 

  63. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by JSPS KAKENHI Grant Number JP19K12136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangce Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Gao, S., Yang, H. et al. Adaptive chaotic spherical evolution algorithm. Memetic Comp. 13, 383–411 (2021). https://doi.org/10.1007/s12293-021-00341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-021-00341-w

Keywords

Navigation