Skip to main content
Log in

Generalised strip-saturation zone models for piezoelectric strip weakened by non-centric semi-permeable crack

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, we have proposed generalised strip-saturation zone models for non-centric semi-permeable straight hairline crack weakening a piezoelectric strip. Strip-saturation zone model is generalised by considering three different situations: when the distributed in-plane normal yield point of electric-displacement over developed saturation zone rims are linear, quadratic, and cubic interpolating polynomials times. The piezoelectric strip is considered under out-of-plane mechanical and in-plane electrical loadings and crack-faces are assumed to be parallel to the strip boundaries. Fourier integral transform technique is adopted to express the solutions in Fredholm integral equation of second kind. Under small-scale electrical yielding, the analytical expression for size of developed saturation zone is determined for constant, linear, quadratic, and cubic varying yield point conditions. Closed-form analytical expressions are also formed for numerous fracture parameters viz. crack-sliding displacement, crack opening potential drop, field intensity factors, and energy release rates. A numerical case study is demonstrated for the PZT-5H, PZT-4, PZT-6B, and PZT-7A piezoelectric ceramics strip to investigate the impact of material properties, strip width, prescribed electro-mechanical loadings, crack-face boundary conditions on fracture parameters. Apart from this, influence of prescribed loadings on electric crack condition parameter is also presented graphically for all generalised strip-saturation zone models. All the obtained results are analyzed and compared graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang BL, Mai YW (2003) On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. Int J Eng Sci 41:633–652

    Article  Google Scholar 

  2. Zhong X-C, Li X-F (2006) Closed-form solution for an eccentric anti-plane shear crack normal to the edges of a magnetoelectroelastic strip. Acta Mech 186:1–15

    Article  Google Scholar 

  3. Bhargava RR, Jangid K, Verma PR (2013) Two semi-permeable equal collinear cracks weakening a piezoelectric plate \(\sim \) A study using complex variable technique. J Appl Math Mech (ZAMM) 95:1–11

    MATH  Google Scholar 

  4. Guo JH, Yu J, Xing YM (2013) Anti-plane analysis on a finite crack in a one-dimensional hexagonal quasicrystal strip. Mech Res Comm 52:40–45

    Article  Google Scholar 

  5. Bhargava RR, Verma PR (2016) A study of crack-face boundary conditions for piezoelectric strip cut along two equal collinear cracks. Adv Appl Math Mech 8:573–587

    Article  MathSciNet  Google Scholar 

  6. Verma PR, Verma RR (2020) Poling angle effect on two mode-III semi-permeable collinear cracks in a piezoelectric strip: strip-saturation model. Appl Math Model 88:573–588

    Article  MathSciNet  Google Scholar 

  7. Shindo Y, Tanaka K, Narita F (1997) Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear. Acta Mech 120:31–45

    Article  Google Scholar 

  8. Shindo Y, Watanabe K, Narita F (2000) Electroelastic analysis of a piezoelectric ceramic strip with a central crack. Int J Eng Sci 38:1–19

    Article  Google Scholar 

  9. Deeg WF (1980) The analysis of dislocation, crack and inclusion problems in piezoelectric solids, Stanford University, PhD thesis

  10. Parton VZ (1976) Fracture mechanics of piezoelectric materials. Acta Astron 3:671–683

    Article  Google Scholar 

  11. Hao TH, Shen ZY (1994) A new electric boundary condition of electric fracture mechanics and its applications. Eng Fract Mech 47:793–802

    Article  Google Scholar 

  12. Li X-F (2002) Electroelastic analysis of an anti-plane shear crack in a piezoelectric ceramic strip. Int J Solids Struct 39:1097–1117

    Article  Google Scholar 

  13. Hu KQ, Zhong Z, Jin B (2005) Anti-plane shear crack in a functionally gradient piezoelectric layer bonded to dissimilar half spaces. Int J Mech Sci 47:82–93

    Article  Google Scholar 

  14. Li YS, Feng WJ, Xu ZH (2009) A penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer. Meccanica 44:377–387

    Article  Google Scholar 

  15. Rokne J, Singh BM, Dhaliwal RS (2012) Moving anti-plane shear crack in a piezoelectric layer bonded to dissimilar elastic infinite spaces. Eur J Mech A Solids 31:47–53

    Article  MathSciNet  Google Scholar 

  16. Bagheri R, Ayatollahi M, Mousavi SM (2015) Analysis of cracked piezoelectric layer with imperfect non-homogeneous orthotropic. Int J Mech Sci 93:93–101

    Article  Google Scholar 

  17. Zhong X, Wu Y, Zhang K (2020) An extended dielectric crack model for fracture analysis of a thermopiezoelectric strip. Acta Mech Sol Sin. https://doi.org/10.1007/s10338-019-00149-9

    Article  Google Scholar 

  18. Gao H, Zhang TY, Tong P (1997) Local and global energy release rates for an electrically yield crack in piezoelectric ceramics. J Mech Phys Solids 45:491–510

    Article  Google Scholar 

  19. Dugdale DS (1960) Yieding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  20. Wang TC (2000) Analysis of strip electric saturation model of crack problem in piezoelectric materials. Int J Solids Struct 37:6031–6049

    Article  Google Scholar 

  21. Kwon SM (2003) Electrical nonlinear anti-plane shear crack in a functionally graded piezoelectric strip. Int J Solids Struct 40:5649–5667

    Article  Google Scholar 

  22. Fan CY, Zhao MH, Zhou YH (2009) Numerical solution of polarization saturation/dielectric breakdown model in 2D finite piezoelectric media. J Mech Phys Solids 57:1527–1544

    Article  Google Scholar 

  23. Fan Y, Zhao YF, Zhao MH, Pan M (2012) Analytical solution of a semipermeable crack in a 2D piezoelectric medium based on the PS model. Mech Res Comm 40:34–40

    Article  Google Scholar 

  24. Hu K, Fu J, Yang Z (2014) Moving Dugdale type crack along the interface of two dissimilar piezoelectric materials. Theor Appl Fract Mech 74:157–163

    Article  Google Scholar 

  25. Hu K, Chen Z (2016) Dugdale plastic zone of a penny-shaped crack in a piezoelectric material under axisymmetric loading. Acta Mech 227:899–912

    Article  MathSciNet  Google Scholar 

  26. Bhargava RR, Verma PR (2015) Mathematical model of electrical and mechanical yielding for piezoelectric strip weakened by a non-centric semi-permeable crack. Appl Math Model 39:531–547

    Article  MathSciNet  Google Scholar 

  27. Govorukha V, Kamlah M, Munz D (2004) The interface crack problem for a piezoelectric semi-infinite strip under concentrated electromechanical loading. Eng Frac Mech 71:1853–1871

    Article  Google Scholar 

  28. Fan M, Xiao ZM, Luo J (2015) On the plastic zone correction of a Zener-Stroh crack interacting with a nearby inhomogeneity and an edge dislocation. Acta Mech 226:4173–4188

    Article  MathSciNet  Google Scholar 

  29. Fan J, Yue D (2020) An equivalent indentation method for the external crack with a Dugdale cohesive zone. J Elast. https://doi.org/10.1007/s10659-020-09773-w

    Article  MathSciNet  MATH  Google Scholar 

  30. Li S (2003) On saturation-strip model of a permeable crack in a piezoelectric ceramic. Acta Mech 165:47–71

    Article  Google Scholar 

  31. Kwon SM, Shin JH (2006) An electrically saturated anti-plane shear crack in a piezoelectric layer constrained between two elastic layers. Int J Mech Sci 48:707–716

    Article  Google Scholar 

  32. Loboda V, Lapusta Y, Govorukha V (2008) Mechanical and electrical yielding for an electrically insulated crack in an interlayer between piezoelectric materials. Int J Eng Sci 46:260–272

    Article  Google Scholar 

  33. Loboda V, Lapusta Y, Sheveleva A (2010) Limited permeable crack in an interlayer between piezoelectric materials with different zones of electrical saturation and mechanical yielding. Int J Solids Struct 47:1795–1806

    Article  Google Scholar 

  34. Lapusta Y, Viun O, Loboda V (2014) Modeling of pre-fracture zones for limited permeable crack in piezoelectric materials. Arch Appl Mech. https://doi.org/10.1007/s00419-014-0879-1

    Article  MATH  Google Scholar 

  35. Fan CY, Guo ZH, Dang HY, Zhao MH (2014) Extended displacement discontinuity method for nonlinear analysis of penny-shaped cracks in three-dimensional piezoelectric media. Eng Anal Bound Elem 38:8–16

    Article  MathSciNet  Google Scholar 

  36. Bhargava RR, Saxena N (2005) Solution for a cracked piezoelectric plate subjected to variable load on plastic zones under mode-I deformation. J Math Proc Tech 164–165:1495–1499

    Article  Google Scholar 

  37. Bhargava RR, Kumar S (2008) Generalised strip yield crack arrest model for a piezoelectric strip with transverse crack. Asian J Exp Sci 22:67–78

    Google Scholar 

  38. Bhargava RR, Setia A (2008) A strip yield model solution for an internally cracked piezoelectric strip. Mech Comput Math 44:451–464

    Article  Google Scholar 

  39. Singh S, Sharma K, Bui TQ (2019) New analytical solutions for modified polarization saturation models in piezoelectric materials. Meccanica. https://doi.org/10.1007/s11012-019-01084-2

    Article  MathSciNet  Google Scholar 

  40. Singh S, Sharma K, Bhargva RR (2019) Analytical solution for two equal collinear modified strip saturated cracks in 2-D semipermeable piezoelectric media, J Appl Math Mech (ZAMM), 1–23

  41. Bhargava RR, Verma PR (2016) Strip-electro-mechanical yield model for transversely situated two semi-permeable collinear cracks in piezoelectric strip. Theor Appl Fract Mech 81:32–49

    Article  Google Scholar 

  42. Copson ET (1961) On certain dual integral equations. Proc Glasgow Math Assoc 5:19–24

    Article  MathSciNet  Google Scholar 

  43. Ryzhik IM, Gradshteyn IS (1965) Table of integrals, series and products. Academic Press, New York

    MATH  Google Scholar 

  44. Shen S, Nishioka T, Kuang ZB, Liu Z (2000) Nonlinear electromechanical interfacial fracture for piezoelectric materials. Mech Math 32:57–64

    Article  Google Scholar 

Download references

Funding

This study was not funded by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Raj Verma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} L_{1} &= \displaystyle \int _{t = 0}^{1}K_{1}(1, t)\Omega _{1}(t)dt \\ L_{2} &= \displaystyle \int _{t = 0}^{1}K_{2}(1, t)\Omega _{2}^{I}(t)dt \\ L_{3} &= \displaystyle \int _{t = 0}^{1}K_{2}(1, t)\Omega _{2}^{II}(t)dt \\ L_{4} &= \displaystyle \int _{t = 0}^{1}K_{2}(1, t)\Omega _{2}^{III}(t)dt \\ L_{5} &= \displaystyle \int _{t = 0}^{1}K_{2}(1, t)\Omega _{2}^{IV}(t)dt \\ K_{1}(1, t) &= \sqrt{t}\displaystyle \int _{y = 0}^{\infty }y\{\Upsilon (y/a) - 1\}J_{0}(y)J_{0}(ty)dy \\ K_{2}(1, t) &= \sqrt{t}\displaystyle \int _{y = 0}^{\infty }y\{\Upsilon (y/c) - 1\}J_{0}(y)J_{0}(ty)dy \\ \Upsilon (y) &= 2\tanh (h_{1}y)/\{1 + M_{12}(y)\},\;\;M_{12}(y) = \tanh (h_{1}y)\coth (h_{2}y) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P.R., Bhargava, R.R. Generalised strip-saturation zone models for piezoelectric strip weakened by non-centric semi-permeable crack. Meccanica 56, 3059–3077 (2021). https://doi.org/10.1007/s11012-021-01408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01408-1

Keywords

Navigation