Skip to main content
Log in

Effect of alkali activators on diffusivity of metakaolin-based geopolymers

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A basic investigation into whether a geopolymer can be utilized as a part of an artificial barrier during radioactive waste disposal was conducted in this study. Geopolymers are comprised primarily alumina and silica, and they exhibit negligible leaching owing to the absence of calcium. Studies on geopolymers are limited compared to those on other cementitious materials because the physical characteristics of geopolymers vary with the production conditions. In this work, metakaolin based geopolymers were prepared, and their diffusion performance was analyzed. The results indicate that the diffusivity of cesium in a geopolymer is affected by the type of alkali activator. Sodium-activated geopolymers had higher cesium adsorption capacity than potassium-activated geopolymers. The cesium adsorption capacity also had a significant effect on the diffusivity of cesium in the geopolymers. It was shown that, in addition to the pore structure and surface area, the mobility of water affects the diffusion performance of the geopolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kurumisawa K, Haga K, Hayashi D, Owada H (2016) Effects of calcium leaching on diffusion properties of hardened and altered cement pastes. Phys Chem Earth 99:175–183. https://doi.org/10.1016/j.pce.2017.03.007

    Article  Google Scholar 

  2. Joseph Davidovits (2008) Geopolymer Chemistry and Applications

  3. Provis JL (2018) Alkali-activated materials. Cem Concr Res 114:40–48. https://doi.org/10.1016/j.cemconres.2017.02.009

    Article  Google Scholar 

  4. Duxson P, Fernández-Jiménez A, Provis JL et al (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  5. Palacios M, Puertas F, Banfill PFG (2007) Rheological Behaviour of Alkali-Activated Slag Pastes and Mortars. Effect of Admixtures. 12th ICCC, Montr Canada 80

  6. Gharzouni A, Joussein E, Samet B et al (2015) Effect of the reactivity of alkaline solution and metakaolin on geopolymer formation. J Non Cryst Solids 410:127–134. https://doi.org/10.1016/j.jnoncrysol.2014.12.021

    Article  Google Scholar 

  7. Duxson P, Mallicoat SW, Lukey GC et al (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Collo Surf A Physicochem Eng Asp 292:8–20. https://doi.org/10.1016/j.colsurfa.2006.05.044

    Article  Google Scholar 

  8. Duxson P, Provis JL, Lukey GC, et al. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. 269 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060

  9. Duxson P, Lukey GC, Separovic F, Deventer JSJ Van (2005) Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels. 832–839. https://doi.org/10.1021/ie0494216

  10. Rovnaník P (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 24:1176–1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023

    Article  Google Scholar 

  11. Muñiz-Villarreal MS, Manzano-Ramírez A, Sampieri-Bulbarela S et al (2011) The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Mater Lett 65:995–998. https://doi.org/10.1016/j.matlet.2010.12.049

    Article  Google Scholar 

  12. Mo BH, Zhu H, Cui XM et al (2014) Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl Clay Sci 99:144–148. https://doi.org/10.1016/j.clay.2014.06.024

    Article  Google Scholar 

  13. Aredes FGM, Campos TMB, MacHado JPB et al (2015) Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceram Int 41:7302–7311. https://doi.org/10.1016/j.ceramint.2015.02.022

    Article  Google Scholar 

  14. Sasaki K, Kurumisawa K, Ibayashi K (2019) Effect of retarders on flow and strength development of alkali-activated fly ash/blast furnace slag composite. Constr Build Mater 216:337–346. https://doi.org/10.1016/j.conbuildmat.2019.05.022

    Article  Google Scholar 

  15. Benavent V, Frizon F, Poulesquen A (2016) Effect of composition and aging on the porous structure of metakaolin-based geopolymers. J Appl Crystallogr 49:2116–2128. https://doi.org/10.1107/S1600576716014618

    Article  Google Scholar 

  16. Pouhet R, Cyr M, Bucher R (2019) Influence of the initial water content in flash calcined metakaolin-based geopolymer. Constr Build Mater 201:421–429. https://doi.org/10.1016/j.conbuildmat.2018.12.201

    Article  Google Scholar 

  17. Rouyer J, Benavent V, Frizon F, Poulesquen A (2017) Influence of geopolymer formulation parameters on the elastic and porous properties over a one-year monitoring. Mater Lett 207:121–124. https://doi.org/10.1016/j.matlet.2017.06.125

    Article  Google Scholar 

  18. Tennakoon C, Shayan A, Sanjayan JG, Xu A (2017) Chloride ingress and steel corrosion in geopolymer concrete based on long term tests. Mater Des 116:287–299. https://doi.org/10.1016/j.matdes.2016.12.030

    Article  Google Scholar 

  19. Yang T, Yao X, Zhang Z (2014) Quantification of chloride diffusion in fly ash-slag-based geopolymers by X-ray fluorescence (XRF). Constr Build Mater 69:109–115. https://doi.org/10.1016/j.conbuildmat.2014.07.031

    Article  Google Scholar 

  20. Osio-Norgaard J, Gevaudan JP, Srubar WV (2018) A review of chloride transport in alkali-activated cement paste, mortar, and concrete. Constr Build Mater 186:191–206. https://doi.org/10.1016/J.CONBUILDMAT.2018.07.119

    Article  Google Scholar 

  21. Jang JG, Park SM, Lee HK (2016) Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. J Hazard Mater 318:339–346. https://doi.org/10.1016/j.jhazmat.2016.07.003

    Article  Google Scholar 

  22. Bondar D, Ma Q, Soutsos M et al (2018) Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity. Constr Build Mater 190:191–199. https://doi.org/10.1016/j.conbuildmat.2018.09.124

    Article  Google Scholar 

  23. Bernal SA, Mejía De Gutiérrez R, Provis JL (2012) Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater 33:99–108. https://doi.org/10.1016/j.conbuildmat.2012.01.017

    Article  Google Scholar 

  24. Lloyd RR, Provis JL, Van Deventer JSJ (2010) Pore solution composition and alkali diffusion in inorganic polymer cement. Cem Concr Res 40:1386–1392. https://doi.org/10.1016/j.cemconres.2010.04.008

    Article  Google Scholar 

  25. Kuenzel C, Cisneros JF, Neville TP et al (2015) Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin. J Nucl Mater 466:94–99. https://doi.org/10.1016/j.jnucmat.2015.07.034

    Article  Google Scholar 

  26. Arbel Haddad M, Ofer-Rozovsky E, Bar-Nes G et al (2017) Formation of zeolites in metakaolin-based geopolymers and their potential application for cs immobilization. J Nucl Mater 493:168–179. https://doi.org/10.1016/j.jnucmat.2017.05.046

    Article  Google Scholar 

  27. Berger S, F. Frizon, Fournel V, Cau-dit-Coumes C (2007) Immobilization of Cesium in Geopolymeric Matrix: a formulation study. 12th Int Congr Chem Cem 1–11

  28. Amorim Júnior NS, Andrade Neto JS, Santana HA et al (2021) Durability and service life analysis of metakaolin-based geopolymer concretes with respect to chloride penetration using chloride migration test and corrosion potential. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.122970

    Article  Google Scholar 

  29. Noushini A, Nguyen QD, Castel A (2021) Assessing alkali-activated concrete performance in chloride environments using NT Build 492. Mater Struct Constr 54:1–15. https://doi.org/10.1617/s11527-021-01652-7

    Article  Google Scholar 

  30. Gluth GJG, Arbi K, Bernal SA et al (2020) RILEM TC 247-DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes. Mater Struct Constr 53:1–17. https://doi.org/10.1617/s11527-020-1449-3

    Article  Google Scholar 

  31. Fu C, Ye H, Zhu K et al (2020) Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers. Cem Concr Compos 114:103721. https://doi.org/10.1016/j.cemconcomp.2020.103721

    Article  Google Scholar 

  32. Benavent V, Steins P, Sobrados I et al (2016) Impact of aluminum on the structure of geopolymers from the early stages to consolidated material. Cem Concr Res 90:27–35. https://doi.org/10.1016/j.cemconres.2016.09.009

    Article  Google Scholar 

  33. Mortlock RF, Bell AT, Radke CJ (1991) NMR investigations of tetrapropylammonium aluminosilicate and borosilicate solutions. J Phys Chem 95:372–378. https://doi.org/10.1021/j100154a067

    Article  Google Scholar 

  34. Massiot D, Fayon F, Capron M et al (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76. https://doi.org/10.1002/mrc.984

    Article  Google Scholar 

  35. Duxson P, Lukey GC, van Deventer JSJ (2006) Thermal evolution of metakaolin geopolymers: Part 1 - Physical evolution. J Non Cryst Solids 352:5541–5555. https://doi.org/10.1016/j.jnoncrysol.2006.09.019

    Article  Google Scholar 

  36. Muller ACA, Scrivener KL, Gajewicz AM, McDonald PJ (2013) Use of bench-top NMR to measure the density, composition and desorption isotherm of C-S-H in cement paste. Microporous Mesoporous Mater 178:99–103. https://doi.org/10.1016/j.micromeso.2013.01.032

    Article  Google Scholar 

  37. Scrivener K, Snellings R, Lothenbach B (2016) A Practical Guide to Microstructural Analysis of Cementitious Materials

  38. Kurumisawa K, Jensen OM (2020) Thermoporometry and proton NMR measurement on cement paste equilibrated at different relative humidities. J Adv Concr Technol. https://doi.org/10.3151/jact.18.456

    Article  Google Scholar 

  39. Kurumisawa K (2015) Application of thermoporometry for evaluation of properties of hardened cement paste. Constr Build Mater 101:926–931. https://doi.org/10.1016/j.conbuildmat.2015.10.061

    Article  Google Scholar 

  40. Hou D, Zhang J, Pan W et al (2020) Nanoscale mechanism of ions immobilized by the geopolymer: A molecular dynamics study. J Nucl Mater 528:151841. https://doi.org/10.1016/j.jnucmat.2019.151841

    Article  Google Scholar 

  41. Nokken M, Boddy A, Hooton RD, Thomas MDA (2006) Time dependent diffusion in concrete-three laboratory studies. Cem Concr Res 36:200–207. https://doi.org/10.1016/j.cemconres.2004.03.030

    Article  Google Scholar 

  42. Luping T, Gulikers J (2007) On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete. Cem Concr Res 37:589–595. https://doi.org/10.1016/j.cemconres.2007.01.006

    Article  Google Scholar 

  43. Tian Q, Nakama S, Sasaki K (2019) Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios. Sci Total Environ 687:1127–1137. https://doi.org/10.1016/j.scitotenv.2019.06.095

    Article  Google Scholar 

  44. Jaya NA, Yun-Ming L, Cheng-Yong H et al (2020) Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Constr Build Mater 247:118641. https://doi.org/10.1016/j.conbuildmat.2020.118641

    Article  Google Scholar 

  45. Kubba Z, Fahim Huseien G, Sam ARM et al (2018) Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars. Case Stud Constr Mater 9:e00205. https://doi.org/10.1016/j.cscm.2018.e00205

    Article  Google Scholar 

  46. Lippmaa E, Mági M, Samoson A et al (1981) Investigation of the Structure of Zeolites by Solid-State High-Resolution 29Si NMR Spectroscopy. J Am Chem Soc 103:4992–4996. https://doi.org/10.1021/ja00407a002

    Article  Google Scholar 

  47. Brun M, Lallemand A, Quinson J-F, Eyraud C (1977) A new method for the simultaneous determination of the size and shape of pores: the thermoporometry. Thermochim Acta 21:59–88. https://doi.org/10.1016/0040-6031(77)85122-8

    Article  Google Scholar 

  48. Snyder KA, Bentz DP (2004) Suspended hydration and loss of freezable water in cement pastes exposed to 90% relative humidity. Cem Concr Res 34:2045–2056. https://doi.org/10.1016/j.cemconres.2004.03.007

    Article  Google Scholar 

  49. Kurumisawa K, Mami Ojima (2020) Physical properties and Microstructure of metakaolin based geopolymer. In: Proceedings of the ConMat’20, Advances in Construction Materials. Fukuoka, pp 413–422

  50. Bentz DP, Snyder KA, Cass LC, Peltz MA (2008) Doubling the service life of concrete structures. I: reducing ion mobility using nanoscale viscosity modifiers. Cem Concr Compos 30:674–678. https://doi.org/10.1016/j.cemconcomp.2008.05.001

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Economy, Trade and Industry (METI). A part of this work was conducted at the Joint-use Facilities: Laboratory of Nano-Micro Material Analysis, Hokkaido University, supported by the "Nanotechnology Platform” program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We express our gratitude to these sources.

Author information

Authors and Affiliations

Authors

Contributions

Kiyofumi Kurumisawa

Supervision, Conceptualization, Methodology, Writing- Original draft preparation, Writing- Editing. Hiroaki Ohmatsu: Methodology. Yuta Yamashina

Methodology.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Corresponding author

Correspondence to Kiyofumi Kurumisawa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19818 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurumisawa, K., Omatu, H. & Yamashina, Y. Effect of alkali activators on diffusivity of metakaolin-based geopolymers. Mater Struct 54, 169 (2021). https://doi.org/10.1617/s11527-021-01758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01758-y

Keywords

Navigation