Skip to main content
Log in

Preparation and characterization of hydrogels obtained from chitosan and carboxymethyl chitosan

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Chitosan and carboxymethyl chitosan-based hydrogels were prepared by crosslinking the biobased polymers with hexamethylene diisocyanate (HDI). The hydrogels were obtained in a simple one-pot route, using water as solvent, at room temperature and without the use of other additives. The obtained materials were characterized using Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TG/DTG), X-ray diffraction (XRD), elemental analysis (CHN) and scanning electron microscopy (SEM) techniques. The water absorption capacity and absorption kinetics were also studied at different pH values. The comparison between the hydrogels obtained from the different biopolymers showed remarkable differences including water absorption capacity (swelling ratio) which is up to ~ 15 for the chitosan-based hydrogel and reached ~ 64 for the carboxymethyl chitosan-based hydrogel. In addition, the morphologies obtained for each sample were also considerably different. The chitosan-based hydrogels did not present pores before the swelling process, and after that, only the presence of a heterogeneous pores structure was observed. On the other hand, for the CMC-based hydrogels a homogeneous porous structure was noticed before and after the swelling process, and a significant increase in pore size was observed after water absorption. Since the two kinds of hydrogels obtained here were prepared through an easy and efficient route, using water as solvent and present potential biodegradability, simultaneously with a good swelling capacity, particularly for the CMC-based hydrogels, the obtained materials can find application in different areas such as agricultural or biomedical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  2. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater Sci Eng R Reports 93:1–49. https://doi.org/10.1016/j.mser.2015.04.001

    Article  Google Scholar 

  3. Wang N, Yu KK, Shan YM et al (2020) HClO/ClO-Indicative Interpenetrating Polymer Network Hydrogels as Intelligent Bioactive Materials for Wound Healing. ACS Appl Bio Mater 3:37–44. https://doi.org/10.1021/acsabm.9b00806

    Article  CAS  Google Scholar 

  4. Saeedi Garakani S, Davachi SM, Bagher Z et al (2020) Fabrication of chitosan/polyvinylpyrrolidone hydrogel scaffolds containing PLGA microparticles loaded with dexamethasone for biomedical applications. Int J Biol Macromol 164:356–370. https://doi.org/10.1016/j.ijbiomac.2020.07.138

    Article  CAS  PubMed  Google Scholar 

  5. Peppas NA, Khademhosseini A (2016) Make better, safer biomaterials. Nature 540:335–336. https://doi.org/10.1038/540335a

    Article  CAS  PubMed  Google Scholar 

  6. Guilherme MR, Aouada FA, Fajardo AR et al (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur Polym J 72:365–385. https://doi.org/10.1016/j.eurpolymj.2015.04.017

    Article  CAS  Google Scholar 

  7. Li S, Chen G (2020) Agricultural waste-derived superabsorbent hydrogels: Preparation, performance, and socioeconomic impacts. J Clean Prod 251:119669. https://doi.org/10.1016/j.jclepro.2019.119669

    Article  CAS  Google Scholar 

  8. Guilherme MR, Reis AV, Takahashi SH et al (2005) Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydr Polym 61:464–471. https://doi.org/10.1016/j.carbpol.2005.06.017

    Article  CAS  Google Scholar 

  9. Senna AM, Botaro VR (2017) Biodegradable hydrogel derived from cellulose acetate and EDTA as a reduction substrate of leaching NPK compound fertilizer and water retention in soil. J Control Release 260:194–201. https://doi.org/10.1016/j.jconrel.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  10. Ohm Y, Pan C, Ford MJ et al (2021) An electrically conductive silver-polacrylamide-alginate hydrogel composite for soft electronics. Nat Electron 4:185–192. https://doi.org/10.1184/R1/14039801

    Article  CAS  Google Scholar 

  11. Zhou W, Li Q, Ma R et al (2021) Modified Alginate-Based Hydrogel as a Carrier of the CB2 Agonist JWH133 for Bone Engineering. ACS Omega 6:6861–6870. https://doi.org/10.1021/acsomega.0c06057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. MaDRG C, Postma A, Frith JE, Meagher L (2021) Printability and bio-functionality of shear thinning methacrylated xanthan - gelatin composite bioink. Biofabrication. https://doi.org/10.1088/1758-5090/abec2d

    Article  Google Scholar 

  13. Zhao X, Lang Q, Yildirimer L et al (2016) Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Adv Healthc Mater 5:108–118. https://doi.org/10.1002/adhm.201500005

    Article  CAS  PubMed  Google Scholar 

  14. Ravishankar K, Dhamodharan R (2020) Advances in chitosan-based hydrogels: Evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. React Funct Polym 149:104517. https://doi.org/10.1016/j.reactfunctpolym.2020.104517

    Article  CAS  Google Scholar 

  15. Irene DR-R (2020) Evaluation of Collagen-Polyurethane-Chitosan Hydrogels for Lead Ions Removal from Water. Mediterr J Basic Appl Sci 04:93–104. https://doi.org/10.46382/mjbas.2020.4209

  16. Wei Q, Bai J, Wang H et al (2021) Photo-induced programmable degradation of carboxymethyl chitosan-based hydrogels. Carbohydr Polym 256:117609. https://doi.org/10.1016/j.carbpol.2020.117609

    Article  CAS  PubMed  Google Scholar 

  17. Zamani A, Henriksson D, Taherzadeh MJ (2010) A new foaming technique for production of superabsorbents from carboxymethyl chitosan. Carbohydr Polym 80:1091–1101. https://doi.org/10.1016/j.carbpol.2010.01.029

    Article  CAS  Google Scholar 

  18. Zargar V, Asghari M, Dashti A (2015) A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Rev 2:204–226. https://doi.org/10.1002/cben.201400025

    Article  Google Scholar 

  19. Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:101–112. https://doi.org/10.1007/s10311-017-0670-y

    Article  CAS  Google Scholar 

  20. Mourya VK, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1:11–33. https://doi.org/10.5185/amlett.2010.3108

    Article  CAS  Google Scholar 

  21. Shariatinia Z (2018) Carboxymethyl chitosan: Properties and biomedical applications. Int J Biol Macromol 120:1406–1419. https://doi.org/10.1016/j.ijbiomac.2018.09.131

    Article  CAS  PubMed  Google Scholar 

  22. Chen XG, Park HJ (2003) Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydr Polym 53:355–359. https://doi.org/10.1016/S0144-8617(03)00051-1

    Article  CAS  Google Scholar 

  23. Farag RK, Mohamed RR (2013) Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity. Molecules 18:190–203. https://doi.org/10.3390/molecules18010190

    Article  CAS  Google Scholar 

  24. Lin-Gibson S, Walls HJ, Kennedy SB, Welsh ER (2003) Reaction kinetics and gel properties of blocked diisocyinate crosslinked chitosan hydrogels. Carbohydr Polym 54:193–199. https://doi.org/10.1016/S0144-8617(03)00159-0

    Article  CAS  Google Scholar 

  25. Welsh ER, Price RR (2003) Chitosan cross-linking with a water-soluble, blocked diisocyanate. 2. Solvates and hydrogels Biomacromolecules 4:1357–1361. https://doi.org/10.1021/bm034111c

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Tan H, min, (2006) Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer. Carbohydr Res 341:887–896. https://doi.org/10.1016/j.carres.2006.01.027

    Article  CAS  PubMed  Google Scholar 

  27. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy, 3rd edn. Thomson Learning, USA

    Google Scholar 

  28. Spinks GM, Lee CK, Wallace GG et al (2006) Swelling behavior of chitosan hydrogels in ionic liquid-water binary systems. Langmuir 22:9375–9379. https://doi.org/10.1021/la061586r

    Article  CAS  PubMed  Google Scholar 

  29. Tronci G, Neffe AT, Pierce BF, Lendlein A (2010) An entropy-elastic gelatin-based hydrogel system. J Mater Chem 20:8875–8884. https://doi.org/10.1039/c0jm00883d

    Article  CAS  Google Scholar 

  30. Qu J, Liang Y, Shi M et al (2019) Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. Int J Biol Macromol 140:255–264. https://doi.org/10.1016/j.ijbiomac.2019.08.120

    Article  CAS  PubMed  Google Scholar 

  31. Baumann H, Faust V (2001) Concepts for improved regioselective placement of O-sulfo, N-sulfo, N-acetyl, and N-carboxymethyl groups in chitosan derivatives. Carbohydr Res 331:43–57. https://doi.org/10.1016/S0008-6215(01)00009-X

    Article  CAS  PubMed  Google Scholar 

  32. Pavianatto A, Fiamingo A, de Bukzem AL et al (2017) Chemically Modified Chitosan Derivatives. In: Dotto GL, Campana-Filho SP, de Pinto LAA (eds) Frontiers in Biomaterials. Chitosan Based Materials and its Applications, vol 3 online. Bentham ebooks, Sharjah, UAE, pp 107–132

  33. Siahaan P, Mentari NC, Wiedyanto UO et al (2017) The optimum conditions of carboxymethyl chitosan synthesis on drug delivery application and its release of kinetics study. Indones J Chem 17:291–300. https://doi.org/10.22146/ijc.24252

  34. Deepuppha N, Kadnaim A, Rutnakornpituk B, Rutnakornpituk M (2020) Poly(ester urethane)-crosslinked carboxymethylchitosan as a highly water swollen hydrogel. J Met Mater Miner 30:48–56. https://doi.org/10.14456/jmmm.2020.6

  35. Jankaew R, Rodkate N, Lamlertthon S et al (2015) “Smart” carboxymethylchitosan hydrogels crosslinked with poly(N-isopropylacrylamide) and poly(acrylic acid) for controlled drug release. Polym Test 42:26–36. https://doi.org/10.1016/j.polymertesting.2014.12.010

    Article  CAS  Google Scholar 

  36. Kadnaim A, Janvikul W, Wichai U, Rutnakornpituk M (2008) Synthesis and properties of carboxymethylchitosan hydrogels modified with poly(ester-urethane). Carbohydr Polym 74:257–267. https://doi.org/10.1016/j.carbpol.2008.02.007

    Article  CAS  Google Scholar 

  37. Flory PJ (1953) Principles of polymer chemistry, 1st ed. Ithaca, New York, USA

  38. Mei J, Mo S, Zhang H et al (2020) Removal of Sr(II) from water with highly-elastic carboxymethyl chitosan gel. Int J Biol Macromol 163:1097–1105. https://doi.org/10.1016/j.ijbiomac.2020.07.038

    Article  CAS  PubMed  Google Scholar 

  39. Chen L, Tian Z, Du Y (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732. https://doi.org/10.1016/j.biomaterials.2003.09.100

    Article  CAS  PubMed  Google Scholar 

  40. Yu R, Cornette de Saint-Cyr L, Soussan L et al (2021) Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications. Int J Biol Macromol 167:1146–1155. https://doi.org/10.1016/j.ijbiomac.2020.11.068

    Article  CAS  PubMed  Google Scholar 

  41. Luo Y, Teng Z, Wang X, Wang Q (2013) Development of carboxymethyl chitosan hydrogel beads in alcohol-aqueous binary solvent for nutrient delivery applications. Food Hydrocoll 31:332–339. https://doi.org/10.1016/j.foodhyd.2012.11.011

    Article  CAS  Google Scholar 

  42. Wahid F, Yin JJ, Xue DD et al (2016) Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol 88:273–279. https://doi.org/10.1016/j.ijbiomac.2016.03.044

    Article  CAS  PubMed  Google Scholar 

  43. Zhao L, Mitomo H, Nagasawa N et al (2003) Radiation synthesis and characteristic of the hydrogels based on carboxymethylated chitin derivatives. Carbohydr Polym 51:169–175. https://doi.org/10.1016/S0144-8617(02)00210-2

    Article  CAS  Google Scholar 

  44. Janvikul W, Thavornyutikarn B (2003) New Route to the Preparation of Carboxymethylchitosan Hydrogels. J Appl Polym Sci 90:4016–4020. https://doi.org/10.1002/app.13129

    Article  CAS  Google Scholar 

  45. Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, García-Carvajal ZY (2020) Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. Int J Polym Mater Polym Biomater 69:1–20. https://doi.org/10.1080/00914037.2019.1581780

    Article  CAS  Google Scholar 

  46. dos Santos TC, Hernández R, Rescignano N et al (2018) Nanocomposite chitosan hydrogels based on PLGA nanoparticles as potential biomedical materials. Eur Polym J 99:456–463. https://doi.org/10.1016/j.eurpolymj.2017.12.039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank CNPq (EDT Universal Nº 28/2018) and Fapemig (EDT Universal N° 1/2017, EDT PPM XI N°2/2017) and INCT-MIDAS for financial support. Centro de Microscopia-UFMG is also gratefully acknowledged for providing the images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano Vargas Pereira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 686 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladeira, N.M.B., Donnici, C.L., de Mesquita, J.P. et al. Preparation and characterization of hydrogels obtained from chitosan and carboxymethyl chitosan. J Polym Res 28, 335 (2021). https://doi.org/10.1007/s10965-021-02682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02682-z

Keywords

Navigation