Skip to main content
Log in

Tensor-Train Numerical Integration of Multivariate Functions with Singularities

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Numerical integration is a classical problem emerging in many fields of science. Multivariate integration cannot be approached with classical methods due to the exponential growth of the number of quadrature nodes. We propose a method to overcome this problem. Tensor-train decomposition of a tensor approximating the integrand is constructed and used to evaluate a multivariate quadrature formula. We show how to deal with singularities in the integration domain and conduct theoretical analysis of the integration accuracy. The reference open-source implementation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. They appear as ingredients in quantum chromodynamics (QCD) calculations and in supersymmetric \(N=4\) Yang–Mills theory within perturbation theory. These Feynman integrals are found in many important functions of these theories, in particular, various anomalous dimensions and form factors.

REFERENCES

  1. C. Bogner and S. Weinzierl, ‘‘Resolution of singularities for multi-loop integrals,’’ Comput. Phys. Commun. 178, 596–610 (2008). https://doi.org/10.1016/j.cpc.2007.11.012

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Piessens, E. de Doncker, C. Uberhuber, and D. Kahaner, Quadpack: A Subroutine Package for Automatic Integration (Springer, Berlin, 1983). https://doi.org/10.1007/978-3-642-61786-7

    Book  MATH  Google Scholar 

  3. G. P. Lepage, ‘‘A new algorithm for adaptive multidimensional integration,’’ J. Comput. Phys. 27, 192–203 (1978). https://doi.org/10.1016/0021-9991(78)90004-9

    Article  MATH  Google Scholar 

  4. G. P. Lepage, ‘‘VEGAS: An adaptive multi-dimensional integration routine,’’ Tech. Report No. CLNS-80/447 (Newman Labor. Nucl. Studies, Cornell Univ., Ithaca, NY, 1980).

  5. W. H. Press and G. R. Farrar, ‘‘Recursive stratified sampling for multidimensional Monte Carlo integration,’’ Comput. Phys. 4, 190–195 (1990). https://doi.org/10.1063/1.4822899

    Article  Google Scholar 

  6. R. Schürer, ‘‘Adaptive quasi-Monte Carlo integration based on MISER and VEGAS,’’ in Monte Carlo and Quasi-Monte Carlo Methods 2002, Ed. by H. Niederreiter (Springer, Berlin, 2004). https://doi.org/10.1007/978-3-642-18743-8_25

    Book  MATH  Google Scholar 

  7. J. Berntsen, T. Espelid, and A. Genz, ‘‘An adaptive algorithm for the approximate calculation of multiple integrals,’’ ACM Trans. Math. Software 17, 437–451 (1991). https://doi.org/10.1145/210232.210233

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Dick, F. Y. Kuo, and I. H. Sloan, ‘‘High-dimensional integration: The quasi-Monte Carlo way,’’ Acta Numer. 22, 133–288 (2013).

    Article  MathSciNet  Google Scholar 

  9. S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, and T. Zirke, ‘‘pySecDec: A toolbox for the numerical evaluation of multi-scale integrals,’’ Comput. Phys. Commun. 222, 313–326 (2018). https://doi.org/10.1016/j.cpc.2017.09.015

    Article  Google Scholar 

  10. S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, and J. Schlenk, ‘‘A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec,’’ Comput. Phys. Commun. 240, 120–137 (2019). https://doi.org/10.1016/j.cpc.2019.02.015

    Article  Google Scholar 

  11. I. V. Oseledets and E. E. Tyrtyshnikov, ‘‘TT-cross approximation for multidimensional arrays,’’ Linear Algebra Appl. 432, 70–88 (2010). https://doi.org/10.1016/j.laa.2009.07.024

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Dolgov and D. Savostyanov, ‘‘Parallel cross interpolation for high-precision calculation of high-dimensional integrals,’’ Comput. Phys. Commun. 246, 106869 (2020). https://doi.org/10.1016/j.cpc.2019.106869

  13. I. V. Oseledets, ‘‘Tensor-train decomposition,’’ SIAM J. Sci. Comput. 33, 2295–2317 (2011). https://doi.org/10.1137/090752286

    Article  MathSciNet  MATH  Google Scholar 

  14. A. V. Smirnov, ‘‘FIESTA 4: Optimized Feynman integral calculations with GPU support,’’ Comput. Phys. Comm. 204, 189–199 (2016). https://doi.org/10.1016/j.cpc.2016.03.013

    Article  MATH  Google Scholar 

  15. D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software (Prentice-Hall, Englewood Cliffs, CA, 1989).

    MATH  Google Scholar 

  16. E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis (Springer Science, New York, 2012).

    MATH  Google Scholar 

  17. M. H. Protter and B. Charles, Jr., Intermediate Calculus (Springer Science, New York, 2012).

    MATH  Google Scholar 

  18. S. A. Goreinov and E. E. Tyrtyshnikov, ‘‘The maximal-volume concept in approximation by low-rank matrices,’’ Contemp. Math. 208, 47–52 (2001)

    Article  MathSciNet  Google Scholar 

  19. S. A. Goreinov, N. L. Zamarashkin, and E. E. Tyrtyshnikov, ‘‘Pseudo-skeleton approximations by matrices of maximal volume,’’ Math. Notes 62, 515–519 (1997). https://doi.org/10.1007/bf02358985

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Civril and M. Magdon-Ismail, ‘‘On selecting a maximum volume sub-matrix of a matrix and related problems,’’ Theor. Comput. Sci. 410, 4801–4811 (2009). https://doi.org/10.1016/j.tcs.2009.06.018

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Bebendorf, ‘‘Approximation of boundary element matrices,’’ Numer. Math. 86, 565–589 (2000). https://doi.org/10.1007/PL00005410

    Article  MathSciNet  MATH  Google Scholar 

  22. E. E. Tyrtyshnikov, ‘‘Incomplete cross approximation in the mosaic-skeleton method,’’ Computing 64, 367–380 (2000). https://doi.org/10.1007/s006070070031

    Article  MathSciNet  MATH  Google Scholar 

  23. S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E Tyrtyshnikov, and N. L. Zamarashkin, ‘‘How to find a good submatrix,’’ in Matrix Methods: Theory, Algorithms and Applications (World Scientific, Singapore, 2010), pp. 247–256. https://doi.org/10.1142/9789812836021_0015

    Book  Google Scholar 

  24. S. M. Kirkup, J. Yazdani, and G. Papazafeiropoulos, ‘‘Quadrature rules for functions with a mid-point logarithmic singularity in the boundary element method based on the \(x=t^{p}\) substitution,’’ Am. J. Comput. Math. 09, 282–301 (2019). https://doi.org/10.4236/ajcm.2019.94021

    Article  Google Scholar 

  25. M. Mori and M. Sugihara, ‘‘The double-exponential transformation in numerical analysis,’’ J. Comput. Appl. Math., 287–296 (2001). https://doi.org/10.1016/S0377-0427(00)00501-X

  26. T. Hahn, ‘‘Cuba — a library for multidimensional numerical integration,’’ Comput. Phys. Commun. 168, 78–95 (2005). https://doi.org/10.1016/j.cpc.2005.01.010

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is supported by Russian Ministry of Science and Higher Education, agreement no. 075-15-2019-1621.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. I. Vysotsky, A. V. Smirnov or E. E. Tyrtyshnikov.

Additional information

(Submitted by V. V. Voevodin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotsky, L.I., Smirnov, A.V. & Tyrtyshnikov, E.E. Tensor-Train Numerical Integration of Multivariate Functions with Singularities. Lobachevskii J Math 42, 1608–1621 (2021). https://doi.org/10.1134/S1995080221070258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221070258

Keywords:

Navigation