Skip to main content
Log in

Silicoaluminophosphate Molecular Sieves SAPO-11 and SAPO-41: Synthesis, Properties, and Applications for Hydroisomerization of C16+ n-Paraffins. Part 2: Current State of Research on Methods to Control the Crystal Morphology, Dispersion, Acidic Properties, Secondary Porous Structure, and Catalytic Properties of SAPO-11 and SAPO-41 in Hydroisomerization of C16+ n-Paraffins (A Review)

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The second part of the review presents the results of research on SAPO-11 and SAPO-41 molecular sieves over the last three decades, with particular emphasis on methods to control the acid properties, morphology, and secondary porous characteristics of these molecular sieves, as well as on the catalytic applications of SAPO-11 and SAPO-41 for hydroisomerization of C16+ n-paraffins. The paper discusses the current understanding of the acid site formation mechanisms in SAPO-11 and SAPO-41, as well as methods for control over the strength and concentration of the acid sites and the morphology and dispersion of the crystals. Recent advances in the synthesis of SAPO-11 and SAPO-41 with a hierarchical porous structure are described, namely the use of pore-forming templates, crystal growth modifiers, and post-synthetic treatment techniques; the pros and cons of different synthesis methods are analyzed. The report also presents the catalytic properties of bifunctional catalytic systems based on SAPO-11 and SAPO-41, including hierarchical structures, in C16+ n-paraffin hydroisomerization. Prospective uses of bifunctional catalytic systems based on SAPO-11 and SAPO-41 for hydroisomerization of base oils are described. Finally, the paper formulates the remaining fundamental problems of SAPO-11 and SAPO-41 synthesis, as well as the prospects for the utilization of these materials as components of high-performance catalysts in the oil refining and petrochemical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Cejka, J., Corma, A., and Zones, S., Zeolites and Catalysis: Synthesis, Reactions and Applications, John Wiley & Sons, 2010. p. 918.

  2. Flanigen E.M, Patton, R.L., and Wilson, S.T., in Innovation in Zeolite Materials Science, Grobet, P.J., Mortier, W.J., Vansant, E.F., and SchulzEkloff, G., Eds., Stud. Surf. Sci. Catal. no. 37, Amsterdam: Elsevier, 1988, p.13. https://doi.org/10.1016/S0167-2991(09)60578-4

  3. Flanigen, E.M., Lok, B.M., Patton, R.L., and Wilson, S.T., Pure Appl. Chem., 1986, vol. 58, pp. 1351–1358.. https://doi.org/10.1351/pac198658101351

    Article  CAS  Google Scholar 

  4. Sastre, G., Lewis, D.W., and Catlow, C.R.A., J. Phys. Chem., 1996, vol. 100, pp. 6722–6730. https://doi.org/10.1021/jp953362f

    Article  CAS  Google Scholar 

  5. Barthomeuf, D., Zeolites, 1994, vol. 14(6), pp. 394–401. https://doi.org/10.1016/0144-2449(94)90164-3

    Article  CAS  Google Scholar 

  6. Yang, Zh., Li, J., Liu, Y., and Liu, Ch., J. Energy Chem., 2017, vol. 26(4), pp. 688–694. https://doi.org/10.1016/j.jechem.2017.02.002

    Article  Google Scholar 

  7. Bértolo, R., Silva, J.M., Ribeiro, M.F., Martins, A., and Fernandes, A., Appl. Catal. A: Gen., 2017, vol. 542, pp. 28–37. https://doi.org/10.1016/j.apcata.2017.05.010

    Article  CAS  Google Scholar 

  8. Araujo, A.S., Fernandes, V.J., Diniz, J.C., Silva, A.O.S., Silva, C.C., and Santos, R.H.A., Mater. Res. Bull., 1999, vol. 34(9), pp. 1369–1373. https://doi.org/10.1016/S0025-5408(99)00135-X

    Article  CAS  Google Scholar 

  9. Wang, X., Zhang, W., Guo, Sh., Zhao, L., and Xiang, H., J. Braz. Chem. Soc., 2013, vol. 24(7), pp. 1180–1187. https://doi.org/10.5935/0103-5053.20130152

    Article  CAS  Google Scholar 

  10. Yang, L., Wang, W., Song, X., Bai, X., Feng, Zh., Liu, T., and Wu, W., Fuel Proc. Tech., 2019, vol. 190, pp. 13–20. https://doi.org/10.1016/j.fuproc.2019.02.027

    Article  CAS  Google Scholar 

  11. Liu, P., Ren, J., and Sun, Y., Catal. Commun., 2008, vol. 9, pp. 1804–1809. https://doi.org/10.1016/j.catcom.2008.01.030

    Article  CAS  Google Scholar 

  12. Fernandes, A., Ribeiro, F., Lourenco, J., and Gabelica, Z., Stud. Surf. Sci. Catal. A, 2008, vol. 174, pp. 281–284. https://doi.org/10.1016/S0167-2991(08)80197-8

    Article  Google Scholar 

  13. Liu, P., Ren, J., and Sun, Y., Micropor. Mesopor. Mater., 2008, vol. 114, pp. 365–372. https://doi.org/10.1016/j.micromeso.2008.01.022

    Article  CAS  Google Scholar 

  14. Singh, P.S., Bandyopadhyay, R., and Rao, B.S., J. Chem. Soc. Faraday Trans., 1996, vol. 92, pp. 2017–2026. https://doi.org/10.1039/FT9969202017

    Article  CAS  Google Scholar 

  15. Sinha, A.K. and Seelan, S., Appl. Catal. A: Gen., 2004, vol. 270, pp. 245–252. https://doi.org/10.1016/j.apcata.2004.05.013

    Article  CAS  Google Scholar 

  16. Wang, Zh., Tian, Zh., Teng, F., Wen, G., Xu, Y., Xu, Zh., and Lin, L., Catal. Lett., 2005, vol. 103, pp. 109–116. https://doi.org/10.1007/s10562-005-6510-x

    Article  CAS  Google Scholar 

  17. Blasco, T., Chica, A., Corma, A., Murphy, W.J., Agundez-Rodriguez, J., and Perez-Pariente, J., J. Catal., 2006, vol. 242, pp. 153–161. https://doi.org/10.1016/j.jcat.2006.05.027

    Article  CAS  Google Scholar 

  18. Strohmaier, K.G. and Vaughan, D.E.W., Patent US 6303534 B1, 2001.

  19. Liu, P., Ren, J., and Sun, Y., Chin. J. Catal., 2008, vol. 29(4), pp. 379–384. https://doi.org/10.1016/S1872-2067(08)60034-0

    Article  CAS  Google Scholar 

  20. Wang, L., Guo, C., Huang, X., and Li, Q., Chem. Lett., 2002, vol. 31, pp. 1012–1013. https://doi.org/10.1246/cl.2002.1012

    Article  Google Scholar 

  21. Guo, L., Fan, Y., Bao, X.J., and Liu, H.Y., J. Catal., 2013, vol. 301, pp. 162–173. https://doi.org/10.1016/j.jcat.2013.02.001

    Article  CAS  Google Scholar 

  22. Song, Ch.-M., Feng, Y., and Ma, L.-L., Micropor. Mesopor. Mater., 2012, vol. 147, pp. 205–211. https://doi.org/10.1016/j.micromeso.2011.06.019

    Article  CAS  Google Scholar 

  23. Song, Ch.-M., Yang, H., Wang, Y., Feng, Y., Shi, X., and Duan, H., Asia-Pac. J. Chem. Eng., 2016, vol. 11, pp. 846–854. https://doi.org/10.1002/apj.2018

    Article  CAS  Google Scholar 

  24. Liu, Y., Lyi, Y., Zhao, X., Xu, L., Mintova, S., Yan, Z., and Liu, X., Chem. Commun., 2018, vol. 54, pp. 10950–10953. https://doi.org/10.1039/C8CC05952G

    Article  CAS  Google Scholar 

  25. Lyu, Y., Liu, Y., He, X., Xu, L., Liu, X., and Yan, Z., Appl. Surf. Sci., 2018, vol. 453, pp. 350–357. https://doi.org/10.1016/j.apsusc.2018.05.106

    Article  CAS  Google Scholar 

  26. Chen, B. and Huang, Y., Micropor. Mesopor. Mater., 2009, vol. 123, pp. 71–77. https://doi.org/10.1016/j.micromeso.2009.03.025

    Article  CAS  Google Scholar 

  27. Prakash, A.M., Chilukuri, S.V.V., Bagwe, R.P., Ashtekar, S., and Chakrabty, D.K., Micropor. Mater., 1996, vol. 6, pp. 89–97. https://doi.org/10.1016/0927-6513(95)00091-7

    Article  CAS  Google Scholar 

  28. Bertolo, R., Fernandes, A., Ribeiro, F., Silva, J.M., Martins, A., Ramoa, F., React. Kinet. Mech. Cat., 2010, vol. 99, pp. 183–191. https://doi.org/10.1007/s11144-009-0110-5

    Article  CAS  Google Scholar 

  29. Chen, J. and Thomas, J.M., Catal. Lett., 1991, vol. 11, pp. 199–207. https://doi.org/10.1007/BF00764086

    Article  CAS  Google Scholar 

  30. Li, L. and Zhang, F., Stud. Surf. Sci. Catal., 2007, vol. 170, pp. 397–402. https://doi.org/10.1016/S0167-2991(07)80866-4

    Article  Google Scholar 

  31. Venkatathri, N. and Srivastava, R., J. Indian Inst. Sci., 2004, vol. 84, pp. 99–105.

    CAS  Google Scholar 

  32. Venkatathri, N. and Srivastava, R., Stud. Surf. Sci. Catal., 2004, vol. 154, pp. 978–984. https://doi.org/10.1016/S0167-2991(04)80913-3

    Article  Google Scholar 

  33. Wei, X., Kikhtyanin, O.V., Parmon, V.N., Wu, W., Bai, X., Zhang, J., Xiao, L., Su, X., and Zhang, Y., J. Por. Mater., 2018, vol. 25, pp. 235–247. https://doi.org/10.1007/s10934-017-0437-7

    Article  CAS  Google Scholar 

  34. Meriaudeau, P., Tuan, V.A., Lefebvre, F., Nghiem, V.T., and Naccache, C., Micropor. Mesopor. Mater., 1998, vol. 26, pp. 161–173. https://doi.org/10.1016/S1387-1811(98)00230-3

    Article  CAS  Google Scholar 

  35. Ma, Y., Li, N., Guan, N., and Xiang, Sh., Micropor. Mesopor. Mater., 2011, vol. 142, pp. 680–687. https://doi.org/10.1016/j.micromeso.2011.01.017

    Article  CAS  Google Scholar 

  36. Li, Sh., Li, J., Dong, M., Fan, S., Zhao, T., Wang, J., and Fan, W., Chem. Soc. Rev., 2019, vol. 48, pp. 885–907. https://doi.org/10.1039/C8CS00774H

    Article  CAS  PubMed  Google Scholar 

  37. Li, L., Shen, K., Huang, X., Lin, Y., and Liu, Y., Micropor. Mesopor. Mater., 2021, vol. 313, pp. 110827–110836. https://doi.org/10.1016/j.micromeso.2020.110827

    Article  CAS  Google Scholar 

  38. Liu, Y., Cui, X., Han, L., Yu, Zh., and Liu, X., Micropor. Mesopor. Mater., 2014, pp. 198, pp. 230–235. https://doi.org/10.1016/j.micromeso.2014.07.046

  39. Li, G. and Chen, Ch., Appl. Mechan. Mater., 2013, vols. 275–277, pp. 1737–1741. https://doi.org/10.4028/www.scientific.net/AMM.275-277.1737

    Article  CAS  Google Scholar 

  40. Wang, L.-J., Guo, Ch.-W., Huang, X.-D., and Li, Q.-Zh., Chem. Lett., 2002, vol. 31(10), pp. 1012–1013. https://doi.org/10.1246/cl.2002.1012

    Article  Google Scholar 

  41. Tiuliukova, I.A., Rudina, N.A., Lysikov, A.I., Cherepanova, S.V., and Parkhomchuk, E.V., Mater. Lett., 2018, vol. 228, pp. 61–64. https://doi.org/10.1016/j.matlet.2018.05.118

    Article  CAS  Google Scholar 

  42. Ren, X.-T., Li, N., Cao, J.-Q., Wang, Zh.-Y., Liu, Sh.-Y., and Xiang, Sh.-H., Appl. Catal. A: Gen., 2006, vol. 298, pp. 144–151. https://doi.org/10.1016/j.apcata.2005.09.031

    Article  CAS  Google Scholar 

  43. Jia, G., Maximov, A.L., Wang, W., Bai, X., Wei, X., Su, X., Li, T., Guo, Ch., and Wu, W., Russ. J. Appl. Chem., 2020, vol. 93(4), pp. 502–511. https://doi.org/10.1134/S1070427220040047

    Article  CAS  Google Scholar 

  44. Agliullin, M.R., Khairullina, Z.R., and Faizullin, A.V., Petrol. Chem., 2019, vol. 59, pp. 349–353. https://doi.org/10.1134/S0965544119030010

    Article  CAS  Google Scholar 

  45. Agliullin, M.R., Lazarev, V.V., and Kutepov, B.I., Russ. Chem. Bull., 2021, vol. 70, pp. 47–55. https://doi.org/10.1007/s11172-021-3055-0

    Article  CAS  Google Scholar 

  46. Agliullin, M.R., Faizullin, A.V., and Khazipova, A.N., Kinet. Catal., 2020, vol. 61, pp. 654–662. https://doi.org/10.1134/S0023158420040011

    Article  CAS  Google Scholar 

  47. Wu, W., Liu, Ch.-J., and Wu, W., Catal. Sci. Technol., 2019, vol. 9, pp. 4162–4187. https://doi.org/10.1039/C9CY00499H

    Article  Google Scholar 

  48. Vermeiren, W. and Gilson, J.-P., Top. Catal., 2009, vol. 52, pp. 1131–1161. https://doi.org/10.1007/s11244-009-9271-8

    Article  CAS  Google Scholar 

  49. Tian, P., Wei, Y., Ye, M., and Liu, Zh., ACS Catal., 2015, vol. 5, pp. 1922–1938. https://doi.org/10.1021/acscatal.5b00007

    Article  CAS  Google Scholar 

  50. Martínez, C. and Corma, A., Coord. Chem. Rev., 2011, vol. 255, pp. 1558–1580. https://doi.org/10.1016/j.ccr.2011.03.014Get

    Article  Google Scholar 

  51. Li, K., Valla, J., and Garcia-Martinez, J., Chem. Cat. Chem., 2014, vol. 6, pp. 46–66. https://doi.org/10.1002/cctc.201300345

    Article  CAS  Google Scholar 

  52. Möller, K. and Bein, Th., Bein. Chem. Soc. Rev., 2013, vol. 42, pp. 3689–3707. doi: 10.1039/C3CS35488A

    Article  PubMed  Google Scholar 

  53. Prasomsri, T., Jiao, W., Weng, S.Z., and Martinez, J.G., Chem. Commun., 2015, vol. 51, pp. 8900–8911. https://doi.org/10.1039/C4CC10391B

    Article  CAS  Google Scholar 

  54. Mintova, S., Jaber, M., and Valtchev, V., Chem. Soc. Rev., 2015, vol. 44, pp. 7207–7233. https://doi.org/10.1039/C5CS00210A

    Article  CAS  PubMed  Google Scholar 

  55. Zhong, J., Han, J., Wei, Y., Tian, P., Guo, X., Song, Ch., and Liu, Zh., Catal. Sci. Technol., 2017, vol. 7, pp. 4905–4923. https://doi.org/10.1039/C7CY01466J

    Article  CAS  Google Scholar 

  56. Jin, D., Liu, Z., Zheng, J., Hua, W., Chen, J., Zhu, K., and Zhou, X., RSC Adv., 2016, vol. 6, pp. 32523–32533. doi:10.1039/C6RA03039D

    Article  CAS  Google Scholar 

  57. Wen, Ch., Han, Sh., Xu, J., and Fan, Y., J. Catal., 2017, vol. 356, pp. 100–110. https://doi.org/10.1016/j.jcat.2017.05.021

    Article  CAS  Google Scholar 

  58. Zhang, F., Liu, Y., Sun, Q., Dai, Zh., Gies, H., Wu, Q., Pan, Sh., Bian, Ch., Tian, Zh., Meng, X., Zhang, Y., Zou, X., Yi, X., Zheng, A., Wang, L., and Xiao, F.-Sh., Chem. Commun., 2017, vol. 53, pp. 4942–4945. https://doi.org/10.1039/C7CC01519D

    Article  CAS  Google Scholar 

  59. Chen, Zh., Song, W., Zhu, Sh., Lai, W., Yi, X., and Fang, W., RSC Adv., 2017, vol. 7, pp. 4656–4666. https://doi.org/10.1039/C6RA26522G

    Article  CAS  Google Scholar 

  60. Zhao, G., Liu, W., Wang, J., Yang, W., Zhu, X., and Zhu, K., Appl. Catal. A: Gen., 2020, vol. 602, p. 117738. https://doi.org/10.1016/j.apcata.2020.117738

    Article  CAS  Google Scholar 

  61. Chen, Zh., Li, X., Xu, Y., Dong, Y., Lai, W., Fang, W., and Yi, X., Catal. Commun., 2018, vol. 103, pp. 1–4. https://doi.org/10.1016/j.catcom.2017.09.002

    Article  CAS  Google Scholar 

  62. Jin, D., Ye, G., Zheng, J., Yang, W., Zhu, K., Coppens, M.-O., and Zhou, X., ACS Catal., 2017, vol. 7, pp. 5887–5902. https://doi.org/10.1021/acscatal.7b01646

    Article  CAS  Google Scholar 

  63. Jin, D., Li, L., Ye, G., Ding, H., Zhao, X., Zhu, K., Coppens, M.-O., and Zhou, X., Catal. Sci. Technol., 2018, vol. 8, pp. 5044–5061. https://doi.org/10.1039/C8CY01483C

    Article  CAS  Google Scholar 

  64. Guo, L., Bao, X.J., Fan, Y., Shi, G., Liu, H.Y., and Bai, D.J., J. Catal., 2012, vol. 294, pp. 161–170. https://doi.org/10.1016/j.jcat.2012.07.016

    Article  CAS  Google Scholar 

  65. Yang, L., Li, H., Fu, J., Li, M., Miao, Ch., Wang, Zh., Lv, P., and Yuan, Zh., RSC Adv., 2019, vol. 9, pp. 34457–34464. https://doi.org/10.1039/C9RA06117G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu, Q., Oduru, I.N., Huang, Y., and Fang, Y., Micropor. Mesopor. Mater., 2015, vol. 218, pp. 24–32. https://doi.org/10.1016/j.micromeso.2015.06.040

    Article  CAS  Google Scholar 

  67. Zhang, P., Liu, H., Yue, Y., Zhu, H., and Bao, X., Fuel Proces. Tech., 2018, vol. 179, pp. 72–85. https://doi.org/10.1016/j.fuproc.2018.06.012

    Article  CAS  Google Scholar 

  68. Yang, G., Zhang, X., Yang, H., Long, Y., and Ma, J., J. Coll. Interf. Sci., 2018, vol. 532, pp. 92–102. https://doi.org/10.1016/j.jcis.2018.07.074

    Article  CAS  Google Scholar 

  69. Liu, Zh., Ma, Zh.P., and Yan, Z.F., Adv. Mater. Res., 2014, vols. 912–914, pp. 168–171. https://doi.org/10.4028/www.scientific.net/AMR.912-914.168

    Article  Google Scholar 

  70. Choi, M., Srivastava, R., and Ryoo, R., Chem. Commun., 2006, pp. 4380–4382. https://doi.org/10.1039/B612265E

  71. Kim, M.Y., Lee, K., and Choi, M., J. Catal., 2014, vol. 319, pp. 232–238. https://doi.org/10.1016/j.jcat.2014.09.001

    Article  CAS  Google Scholar 

  72. Bértolo, R., Silva, J.M., Ribeiro, F., Maldonado-Hodar, F.J., Fernandes, A., and Martins, A., Appl. Catal. A: Gen., 2014, vol. 485, pp. 230–237. https://doi.org/10.1016/j.apcata.2014.08.006

    Article  CAS  Google Scholar 

  73. Zhang, Sh., Chen, Sh.-L., and Dong, P., Catal. Lett., 2010, vol. 136, pp. 126 – 133. https://doi.org/10.1007/s10562-009-0186-6

    Article  CAS  Google Scholar 

  74. Tao, Sh., Li, X., Lv, F., Wang, C., Xu, R., Ma, H., and Tian, Zh., Catal. Sci. Technol., 2017, vol. 7, pp. 5775– 5784. https://doi.org/10.1039/C7CY01819C

    Article  CAS  Google Scholar 

  75. Liu, Y., Qu, W., Chang, W., Pan, Sh., Tian, Zh., Meng, X., Rigutto, M., van der Made, A., Zhao, L., Zheng, X., and Xiao, F.-Sh., J. Coll. Interf. Sci., 2014, vol. 418, pp. 193–199. https://doi.org/10.1016/j.jcis.2013.11.065

    Article  CAS  Google Scholar 

  76. Verboekend, D., Milina, M., and Perez-Ramires, J., Chem. Mater., 2014, vol. 26, pp. 4552–4562. https://doi.org/10.1021/cm501774s

    Article  CAS  Google Scholar 

  77. Song, H., Liu, Zh., Xing, W., Feng, R., Yan, Z., Zhao, L., and Zhang, Zh., Appl. Petrochem Res., 2014, vol. 4, pp. 389–394. https://doi.org/10.1007/s13203-014-0078-6

    Article  CAS  Google Scholar 

  78. Wang, X., Liu, Zh., Guo, F., Wang, Y., Wei, X., Li, P., Xue, Y., Wang, Y., Guo, Sh., and Yu, Y., RSC Adv., 2018, vol. 8, pp. 243–250. https://doi.org/10.1039/C7RA12009E

    Article  CAS  Google Scholar 

  79. Tosheva, L. and Valtchev, V.P., Chem. Mater., 2005, vol. 17, pp. 2494-2513. https://doi.org/

    Article  CAS  Google Scholar 

  80. Deldari, H., Appl. Catal. A: Gen., 2005, vol. 293, pp. 1–10. https://doi.org/10.1016/j.apcata.2005.07.008

    Article  CAS  Google Scholar 

  81. Seo, Y., Lee, S., Jo, Ch., and Ryoo, R., J. Am. Chem. Soc., 2013, vol. 135(24), pp. 8806 – 8809. https://doi.org/10.1021/ja403580j

    Article  CAS  PubMed  Google Scholar 

  82. Majano, G., Raltchev, K., Vicente, A., and Mintova, S., Nanoscale, 2015, vol. 7, pp. 5787–5793. https://doi.org/10.1039/C4NR07272C

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, Sh., Chen, Sh.-L., Dong, P., Ji, Zh., Junying, Zh., and Keqi, X., Chin. J. Catal., 2007, vol. 28(10), pp. 857–864. https://doi.org/10.1016/S1872-2067(07)60071-0

    Article  CAS  Google Scholar 

  84. Agliullin, M.R., Khairullina, Z.R., and Kutepov, B.I., Catal. Ind., 2020, vol. 12, pp. 273–279. https://doi.org/10.1134/S2070050420040029

    Article  Google Scholar 

  85. Chenm, L.-H., Li, X.-Y., Rooke, J.C., Zhang, Y.-H., Yang, X.-Y., Tang, Y., Xiao, F.-Sh., and Su, B.-L., J. Mater. Chem., 2012, vol. 22, pp. 17381–17403. https://doi.org/10.1039/C2JM31957H

    Article  Google Scholar 

  86. Akhmedov, V.M. and Al-Khowaiter, S.H., Catal. Rev., 2007, vol. 49(1), pp. 33–139. https://doi.org/10.1080/01614940601128427

    Article  CAS  Google Scholar 

  87. Atsonios, K., Panopoulos, K.D., Nikolopoulos, N., Lappas, A.A., and Kakaras, E., Fuel Process. Technol., 2018, vol. 171, pp. 148–161. https://doi.org/10.1016/j.fuproc.2017.11.009

    Article  CAS  Google Scholar 

  88. Hari, T.K., Yaakob, Z., and Binitha, N.N., Renew. Sustain. Energ. Rev., 2015, vol. 42, pp. 1234–1244. https://doi.org/10.1016/j.rser.2014.10.095

    Article  Google Scholar 

  89. Yadav, R. and Sakthivel, A., Appl. Catal. A: Gen., 2014, vol. 481, pp. 143–160. https://doi.org/10.1016/j.apcata.2014.05.010

    Article  CAS  Google Scholar 

  90. Smit, B. and Maesen, T.L.M., Nature, 2008, vol. 451, pp. 671–678. https://doi.org/10.1038/nature06552

    Article  CAS  PubMed  Google Scholar 

  91. Claude, M.C., Vanbutsele, G., and Martens, J.A., J. Catal., 2001, vol. 203, pp. 213–231. https://doi.org/10.1006/jcat.2001.3325

    Article  CAS  Google Scholar 

  92. Narasimhan, L., Thybaut, C.S., Marin, J.W., Jacobs, G.B., Martens, P.A., Denayer, J.A., and Baron, G.V., J. Catal., 2003, vol. 220, pp. 399–413. https://doi.org/10.1016/S0021-9517(03)00281-1

    Article  CAS  Google Scholar 

  93. Miller, S.J., Micropor. Mater., 1994, vol. 2(5), pp. 439–449. https://doi.org/10.1016/0927-6513(94)00016-6

    Article  CAS  Google Scholar 

  94. Zhang, Sh., Chen, Sh.-L., Dong, P., Yuan, G., and Xu, K., Appl. Catal. A: Gen., 2007, vol. 332, pp. 46–55. https://doi.org/10.1016/j.apcata.2007.07.047

    Article  CAS  Google Scholar 

  95. Zhang, Sh., Chen, Sh.-L., Dong, P., Ji, Zh., Zhao, J., and Xu, L., Catal. Lett., 2007, vol. 118(1-2), pp. 109–117. https://doi.org/10.1007/s10562-007-9138-1

    Article  CAS  Google Scholar 

  96. Du, Y., Feng, B., Jiang, Y., Yuan L,. Huang, K., and Li, J., J. Inorg. Chem., 2018, pp. 2599–2606. https://doi.org/10.1002/ejic.201800134

  97. Gerasimov, D.N., Kashin, E.V., Pigoleva, I.V., Maslov, I.A., Fadeev, V.V., and Zaglyadova, S.V., Energ. Fuel., 2019, vol. 33(4), pp. 3492–3503. https://doi.org/10.1021/acs.energyfuels.9b00289

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out within the state assignment for the IPC RAS on the topic “Zeolite Materials of Different Structural Types with High Crystallinity and Hierarchical Porous Structure as a New Generation of Catalysts for the Synthesis of Important Petrochemicals,” State Register entry no. AAAA-A19-119022290006-2, and with financial support from the Russian Presidential Scholarship for young researchers and graduate students (SP-3341.2021.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Agliullin.

Ethics declarations

A.L. Maximov, a co-author, is the Chief Editor at the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agliullin, M.R., Kutepov, B.I., Ostroumova, V.A. et al. Silicoaluminophosphate Molecular Sieves SAPO-11 and SAPO-41: Synthesis, Properties, and Applications for Hydroisomerization of C16+ n-Paraffins. Part 2: Current State of Research on Methods to Control the Crystal Morphology, Dispersion, Acidic Properties, Secondary Porous Structure, and Catalytic Properties of SAPO-11 and SAPO-41 in Hydroisomerization of C16+ n-Paraffins (A Review). Pet. Chem. 61, 852–870 (2021). https://doi.org/10.1134/S096554412108003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554412108003X

Keywords:

Navigation