Skip to main content
Log in

Characterization of Surface Properties and Hydrocarbon Adsorption of Torrefied Cardboard via Inverse Gas Chromatography and Complementary Analytical Techniques

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Inverse gas chromatography (IGC), atomic absorption spectroscopy (AAS), and Fourier-transform infrared spectroscopy (FTIR) were employed to investigate the surface properties of torrefied cardboard samples and their hydrocarbon adsorption. Three torrefied cardboard samples, TC-200, TC-250, and TC-300, were prepared at 200, 250, and 300 °C, respectively. A series of n-alkanes, BTX (benzene, toluene, and p-xylene), and several polar probes (dichloromethane, acetone, ethyl acetate, and tetrahydrofuran) were selected as molecular probes to measure the molar adsorption enthalpies (\({\Delta H}_{\mathrm{m}}\)), dispersive surface energies, and acid–base properties of torrefied cardboard samples. The \({\Delta H}_{\mathrm{m}}\) values of hydrocarbons measured on TC-300 and TC-250 were more exothermic than those measured for TC-200 by about 19 and 13%, respectively. The \({\Delta H}_{m}\) values of benzene, toluene, and p-xylene on three torrefied cardboard samples became more negative than those of n-hexane, n-heptane, and n-octane by approximately 17–20%. Surface free energy analysis using molecular probes found that TC-300 exhibited higher dispersive and specific surface energy than TC-250 and TC-200 did. From FTIR spectra and elemental analysis via AAS, C=C moieties in the carbonaceous substances and inorganic mineral compositions are responsible for enhanced dispersive and specific surface energy of TC-300. BTX adsorption isotherms on torrefied cardboard samples were well-fitted using the Freundlich model. Fitted parameters of adsorption isotherms also found that TC-300 had a larger adsorption capacity toward BTX than TC-250, TC-200, and non-torrefied cardboard did.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tumuluru JS, Sokhansanj S, Hess JR, Wright CT, Boardman RD (2011) Ind Biotechnol 7:384–401

    Article  CAS  Google Scholar 

  2. Acharya B, Sule I, Dutta A (2012) Biomass Conv Bioref 2:349–369

    Article  CAS  Google Scholar 

  3. Yuan H, Wang Y, Kobayashi N, Zhao D, Xing S (2015) Energy Fuels 29:4976–4980

    Article  CAS  Google Scholar 

  4. Isemin R, Klimov D, Larina O, Sytchev G, Zaichenko V, Milovanov O (2019) Fuel 243:230–239

    Article  CAS  Google Scholar 

  5. Negi S, Jaswal G, Dass K, Mazumder K, Elumalai S, Roy JK (2020) Rev Environ Sci Biotechnol 19:463–488

    Article  CAS  Google Scholar 

  6. Triyono B, Prawisudha P, Aziz M, Mardiyati PAD, Yoshikawa K (2019) Waste Manage 95:1–9

    Article  Google Scholar 

  7. Rago YP, Collard F-X, Görgens JF, Surroop D, Mohee R (2020) Fuel 277:118089

    Article  CAS  Google Scholar 

  8. Delgado B, González DL, Godbout S, Lagacé R, Giroir-Fendler A, Ramirez AA (2017) Sci Total Environ 593–594:406–417

    Article  PubMed  CAS  Google Scholar 

  9. Meeks OR, Rybolt TR (1997) J Colloid Interface Sci 196:103–109

    Article  CAS  PubMed  Google Scholar 

  10. Frauenhofer E, Cho J, Yu J, Al-Saigh ZY, Kim J (2019) J Chromatogr A 1594:149–159

    Article  CAS  PubMed  Google Scholar 

  11. Pérez-Mendoza M, Almazán-Almazán MC, Méndez-Liñán L, Domingo-García M, López-Garzón FJ (2008) J Chromatogr A 1214:121–127

    Article  PubMed  CAS  Google Scholar 

  12. Strzemiecka B, Voelkel A, Donate-Robles J, Martín-Martínez JM (2014) Appl Surf Sci 316:315–323

    Article  CAS  Google Scholar 

  13. Ho R, Heng JYY (2013) KONA Powder Part J 30:164–180

    Article  CAS  Google Scholar 

  14. Boutboul A, Lenfant F, Giampaoli P, Feigenbaum A, Ducruet V (2002) J Chromatogr A 969:9–16

    Article  CAS  PubMed  Google Scholar 

  15. Montes-Morán MA, Paredes JI, Martínez-Alonso A, Tascón JMD (2002) Macromolecules 35:5085–5096

    Article  CAS  Google Scholar 

  16. Yampolskii Y, Belov N (2015) Macromolecules 48:6751–6767

    Article  CAS  Google Scholar 

  17. Gamelas JAF (2013) Cellulose 20:2675–2693

    Article  CAS  Google Scholar 

  18. Ngeow YW, Williams DR, Chapman AV, Heng JYY (2020) ACS Omega 5:10266–10275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Steinberg SM, Kreamer DK (1993) Environ Sci Technol 27:883–888

    Article  CAS  Google Scholar 

  20. Gholami F, Tomas M, Gholami Z, Mirzaei S, Vakili M (2020) Electrochem 1:367–387

    Article  Google Scholar 

  21. Díaz E, Ordóñez S, Vega A, Coca J (2005) Microporous Mesoporous Mater 82:173–181

    Article  CAS  Google Scholar 

  22. Bose E, Leal JH, Hoover AN, Zeng YN, Li CL, Ray AE, Semelsberger TA, Donohoe BS (2020) ACS Sustain Chem Eng 8:13973–13983

    Article  CAS  Google Scholar 

  23. Yan JP, Oyedeji O, Leal JH, Donohoe BS, Semelsberger TA, Li CL, Hoover AN, Webb E, Bose EA, Zeng YN, Williams CL, Schaller KD, Sun N, Ray AE, Tanjore D (2020) ACS Sustain Chem Eng 8:8059–8085

    Article  CAS  Google Scholar 

  24. Liu HJ, Xu BW, Wei KY, Yu YS, Long C (2020) Sci Total Environ 1:733

    Google Scholar 

  25. Hamieh T (2020) J Chromatogr A 1627:461372

    Article  CAS  PubMed  Google Scholar 

  26. Shi B (2019) J Chromatogr A 1601:385–387

    Article  CAS  PubMed  Google Scholar 

  27. Shi B, Wang Y, Jia L (2011) J Chromatogr A 1218:860–862

    Article  CAS  PubMed  Google Scholar 

  28. Gavara R, Catalá R, Aucejo S, Cabedo D, Hernandez R (1996) J Polym Sci B Polym Phys 34:1907–1915

    Article  CAS  Google Scholar 

  29. Mohammadi-Jam S, Waters KE (2014) Adv Colloid Interface Sci 212:21–44

    Article  CAS  PubMed  Google Scholar 

  30. Dorris GM, Gray DG (1980) J Colloid Interface Sci 77:353–362

    Article  CAS  Google Scholar 

  31. Fowkes FM (1964) Ind Eng Chem 56:40–52

    Article  CAS  Google Scholar 

  32. Gutmann V (1978) The Donor-acceptor approach to molecular interactions. Plenum

    Book  Google Scholar 

  33. Schultz J, Lavielle L, Martin C (1987) J Adhes 23:45–60

    Article  CAS  Google Scholar 

  34. Saint-Flour C, Papirer E (1982) Ind Eng Chem Prod Res Dev 21:337–341

    Article  CAS  Google Scholar 

  35. Saint-Flour C, Papirer E (1982) Ind Eng Chem Prod Res Dev 21:666–669

    Article  CAS  Google Scholar 

  36. Donnet JB, Park S-J, Balard H (1991) Chromatographia 31:434–440

    Article  CAS  Google Scholar 

  37. Sawyer DT, Brookman DJ (1968) Anal Chem 40:1847–1853

    Article  CAS  Google Scholar 

  38. Hamieh T (2021) J Chromatogr Sci 2021:1–17

    Google Scholar 

  39. Hamieh T (2018) J Chromatogr A 1568:168–176

    Article  CAS  PubMed  Google Scholar 

  40. Jasper JJ (1972) J Phys Chem Ref Data 1:841–1009

    Article  CAS  Google Scholar 

  41. Hamieh T, Schultz J (2002) J Chromatogr A 969:17–25

    Article  CAS  PubMed  Google Scholar 

  42. Dreisbach RR (1955) Physical properties of chemical compounds. ACS

    Google Scholar 

  43. Dreisbach RR (1959) Physical properties of chemical compounds II. ACS

    Google Scholar 

  44. Dreisbach RR (1961) Physical properties of chemical compounds III. ACS

    Book  Google Scholar 

  45. NIST Standard Reference Database Number 69, https://webbook.nist.gov/chemistry/ (Accessed May, 2021)

  46. Hamieh T, Fadlallah M-B, Schultz J (2002) J Chromatogr A 969:37–47

    Article  CAS  PubMed  Google Scholar 

  47. Kiselev AV, Yashin YI (1969) Gas-adsorption chromatography. Plenum

    Book  Google Scholar 

  48. Couhert C, Salvador S, Commandré J-M (2009) Fuel 88:2286–2290

    Article  CAS  Google Scholar 

  49. Kubovský I, Kačíková D, Kačík F (2020) Polymers 12:485

    Article  PubMed Central  CAS  Google Scholar 

  50. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  51. Abidi N, Cabrales L, Haigler CH (2014) Carbohydr Polym 100:9–16

    Article  CAS  PubMed  Google Scholar 

  52. Roberts JC (ed) (1996) Paper chemistry. Royal Society of Chemistry

    Google Scholar 

  53. Nowicki P, Supłat M, Przepiórski J, Pietrzak R (2012) Chem Eng J 195–196:7–14

    Article  CAS  Google Scholar 

  54. Lee HL, Luner P (1993) J Wood Chem Tech 13:127–144

    Article  CAS  Google Scholar 

  55. Santos JMRCA, Gil MH, Portugal A, Guthrie JT (2001) Cell Ulose 8:217–224

    Article  CAS  Google Scholar 

  56. Díaz E, Ordóñez S, Vega A, Coca J (2004) J Chromatogr A 1049:139–146

    Article  PubMed  CAS  Google Scholar 

  57. López-Garzón FJ, Domingo-Garcia M, Pyda M (1993) Langmuir 9:531–536

    Article  Google Scholar 

  58. Legras A, Kondor A, Alcock M, Heitzmann MT, Truss RW (2017) Cellulose 24:4691–4700

    Article  CAS  Google Scholar 

  59. Rjiba N, Nardin M, Dréan J-Y, Frydrych R (2007) J Colloid Interface Sci 314:373–380

    Article  CAS  PubMed  Google Scholar 

  60. Cossarutto L, Vagner C, Finqueneisel G, Weber JV, Zimny T (2001) Appl Surf Sci 177:207–211

    Article  CAS  Google Scholar 

  61. Song Y, Zhu Y-M, Li W (2017) Appl Surf Sci 396:291–302

    Article  CAS  Google Scholar 

  62. Ma Y, Cao J (2020). Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00739-5

    Article  Google Scholar 

  63. Wang X, Sotoudehniakarani F, Yu Z, Morrell JJ, Cappellazzi J, McDonald AG (2019) Polym Degrad Stab 168:108955

    Article  CAS  Google Scholar 

  64. Reichardt C (1979) Angew Chem Int Ed 18:98–110

    Article  Google Scholar 

  65. Thomas JE, Kelley MJ (2008) J Colloid Interf Sci 322:516–526

    Article  CAS  Google Scholar 

  66. Campbell CT, Sellers JRV (2012) J Am Chem Soc 134:18109–18115

    Article  CAS  PubMed  Google Scholar 

  67. Hoory SE, Prausnitz JM (1967) Trans Faraday Soc 63:455–460

    Article  CAS  Google Scholar 

  68. Gaberle J, Gao DZ, Watkins MB, Shluger AL (2016) J Phys Chem C 120:3913–3921

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonyeong Kim.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 201 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J. Characterization of Surface Properties and Hydrocarbon Adsorption of Torrefied Cardboard via Inverse Gas Chromatography and Complementary Analytical Techniques. Chromatographia 84, 875–887 (2021). https://doi.org/10.1007/s10337-021-04071-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04071-6

Keywords

Navigation