Skip to main content
Log in

Quantum Protocols for Private Set Intersection Cardinality and Union Cardinality Based on Entanglement Swapping

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum private set intersection cardinality (PSI-CA) and private set union cardinality (PSU-CA) are two specific primitives of classical secure multi-party computation. Because of the appearance of quantum algorithms such as Shor’s algorithm, the secure multi-party computation protocols based on classical mathematical problems such as large integer factorization and discrete logarithm have been threatened potentially. Thus, as one of the most powerful resources, quantum mechanics is widely used to construct various secure multi-party computation protocols for the reason that it can provide unconditional security. In this paper, based on entanglement swapping between d-level Bell states and d-level cat states, a quantum protocol is built to perform the calculations of private set intersection cardinality and private set union cardinality. With the help of a semi-honest third party who does not collude with any participant, the proposed protocol can simultaneously calculate intersection cardinality and union cardinality of the private sets held by multiple participants who do not trust each other without revealing the intersection, the union and the sets themselves. The protocol can resist attacks from external, semi-honest TP and participants, even though m − 1 participants collude together (m is the number of participants). In addition, the algorithm in the protocol is deterministic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yao, A.C.: .. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science 1982, pp 160–164 (1982)

  2. Freedman, M.J., Nissim, K., Pinkas, B.: . In: Cachin, C., Camenisch, J. (eds.) Proceedings of EUROCRYPT, pp 1–19. Springer, Berlin (2004)

  3. Kissner, L., Song, D: . In: Franklin, M. (ed.) Proceedings of CRYPTO, pp 241–257. Springer, Berlin (2005)

  4. Cristofaro, E.D., Gasti, P., Tsudik, G.: .. In: Proceedings of Cryptology and Network Security, pp 218–231. Springer, Berlin (2012)

  5. Debnath, S.K., Dutta, R.: .. In: Proceedings of International Information Security Conference, pp 209–226. Springer, Berlin (2015)

  6. Debnath, S.K., Stanica, P., Kundu, N., Choudhury, T.: . Adv. Math. Commun. 15(2), 365 (2021)

    Article  MathSciNet  Google Scholar 

  7. Shor, P.: .. In: Proc. of 35th Annual Symposium on the Foundations of Computer Science, pp 124–134. IEEE Computer Society Press, Los Alamitos, CA (1994)

  8. Bennett, C.H., Brassard, G.: .. In: Proceedings of IEEE International Conference on Computers, Bangalore, Indian, pp 175–179 (1984)

  9. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: . Opt. Commun. 284(1), 545 (2011)

    Article  ADS  Google Scholar 

  10. Wei, C.Y., Cai, X.Q., Wang, T.Y., Qin, S.J., Gao, F., Wen, Q.Y.: . IEEE J. Sel. Areas Commun. 38(3), 517 (2020)

    Article  Google Scholar 

  11. Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: . Sci. China: Phys. Mech. Astron. 62(7), 070301 (2019)

    Google Scholar 

  12. Yang, Y.G., Wen, Q.Y.: . J. Phys. A Math. Theor. 42(5), 055305 (2009)

    Article  ADS  Google Scholar 

  13. Shi, R., Mu, Y., Zhong, H., Zhang, S., Cui, J.: . Inform. Sci. 370, 147 (2016)

    Article  Google Scholar 

  14. Shi, R.H., Zhang, M.W.: . IEEE Access 7, 72105 (2019)

    Article  Google Scholar 

  15. Zhang, C., Long, Y.X., Sun, Z.W., Li, Q., Huang, Q.: . Sci. Rep. 10(1), 22246 (2020)

    Article  ADS  Google Scholar 

  16. Cerf, N.J.: . Acta Physica Slovaca 48(3), 115 (1998)

    MathSciNet  Google Scholar 

  17. Bell, J.S.: . Physics 1(3), 195 (1964)

    Article  MathSciNet  Google Scholar 

  18. Karimipour, V., Bagherinezhad, S., Bahraminasab, A.: . Phys. Rev. A 65(4), 042320 (2002)

    Article  ADS  Google Scholar 

  19. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp 69–72. Kluwer Academic, Dordrecht (1989). Chap. Going Beyond Bell’s Theorem

    Book  Google Scholar 

  20. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: . Am. J. Phys. 58(12), 1131 (1990)

    Article  ADS  Google Scholar 

  21. Yang, Y.G., Xia, J., Jia, X., Hua, Z.: . Quantum Inf. Process. 12(2), 877 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. Li, C.Y., Zhou, H.Y, Wang, Y., Deng, F.G.: . Chin. Phys. Lett. 22(5), 1049 (2005)

    Article  ADS  Google Scholar 

  23. Chen, Y., Man, Z.X., Xia, Y.J.: . Chin. Phys. Lett. 24(1), 19 (2007)

    Article  ADS  Google Scholar 

  24. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: . Quantum Inf. Comput. 7(4), 329 (2007)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 61632020), the Science and Technology Innovation Bases Special Project of Key Laboratory of Shandong Province for Software Engineering(No. 11480004042015), the NSFC of Shandong (No. ZR2018MA014), the PCSIRT (No. IRT1264), and the Fundamental Research Funds of Shandong University (No. 2017JC019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuliang Xu.

Ethics declarations

Conflict of Interests

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hu, P. & Xu, Q. Quantum Protocols for Private Set Intersection Cardinality and Union Cardinality Based on Entanglement Swapping. Int J Theor Phys 60, 3514–3528 (2021). https://doi.org/10.1007/s10773-021-04925-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04925-7

Keywords

Navigation