Skip to main content
Log in

Secure Three-Party Semi-quantum Summation Using Single Photons

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We first propose a three-party semi-quantum summation protocol with an almost-dishonest third party (TP) using single photons. TP who has full quantum power helps three classical users compute the summation of their private bit strings while the privacy of their inputs is preserved. For a particle from TP, three users’ operations are limited either to (1) reflect the particle without disturbance back to TP or to (2) measure the particle in the Z basis and resend the measured particle back to TP. We also show that our protocol is secure against both outside and participant attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Heinrich, S.: Quantum summation with an application to integration. J. Complex. 18(1), 1–50 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Heinrich, S., Novak, E.: On a problem in quantum summation. J. Complex. 19(1), 1–18 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Heinrich, S., Kwas, M., Wozniakowski, H.: Quantum boolean summation with repetitions in the worst-average setting. arXiv:quant-ph/0311036 (2003)

  4. Du, J. Z., Chen, X. B., Wen, Q. Y., Zhu, F. C.: Secure multiparty quantum summation. Acta Phys. Sin. 56(11), 6214 (2007)

    Article  MathSciNet  Google Scholar 

  5. Chen, X. B., Xu, G., Yang, Y. X., Wen, Q. Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theo. Phy. 49(11), 2793–2804 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lo, H. K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154–1162 (1997)

    Article  ADS  Google Scholar 

  7. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp 643–652. ACM (2002)

  8. Chau, H. F.: Quantum-classical complexity-security tradeoff in secure multiparty computations. Phys. Rev. A 61, 032308 (2000)

    Article  ADS  Google Scholar 

  9. Ben-Or, M., Crepeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: 47th Annual IEEE Symposium on Foundations of Computer Science, 2006. FOCS’06, pp 249–260 (2006)

  10. Smith, A.: Multi-party quantum computation. arXiv:quant-ph/0111030 (2010)

  11. Sun, Z., Yu, J., Wang, P., Xu, L., Wu, C.: Quantum private comparison with a malicious third party. Quantum Inf. Process 14(6), 2125–2133 (2015)

    Article  ADS  MATH  Google Scholar 

  12. Hung, S. M., Hwang, S. L., Hwang, T., Kao, S. H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process 16(2), 36 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. He, G.P.: Quantum private comparison protocol without a third party. Int. J. Quantum Inf. 15(02), 1750014 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hillery, M., Ziman, M., Bužek, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1-4), 75–81 (2006)

    Article  ADS  MATH  Google Scholar 

  15. Li, Y., Zeng, G.: Quantum anonymous voting systems based on entangled state. Optical Review 15(5), 219–223 (2008)

    Article  ADS  Google Scholar 

  16. Wang, Q., Yu, C., Gao, F., Qi, H., Wen, Q.: Self-tallying quantum anonymous voting. Phys. Rev. A 94(2), 022333 (2016)

    Article  ADS  Google Scholar 

  17. Xue, P., Zhang, X.: A simple quantum voting scheme with multi-qubit entanglement. Scientific Reports 7(1), 7586 (2017)

    Article  ADS  Google Scholar 

  18. Bao, N., Halpern, N.Y.: Quantum voting and violation of arrow’s impossibility theorem. Phys. Rev. A 95(6), 062306 (2017)

    Article  ADS  Google Scholar 

  19. Zhang, C., Sun, Z., Huang, Y., Long, D.: High-capacity quantum summation with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 53(3), 933–941 (2014)

    Article  MATH  Google Scholar 

  20. Zhang, C., Sun, Z.W., Huang, X., Long, D.Y.: Three-party quantum summation without a trusted third party. Int. J. Quantum Inf. 13(02), 1550011 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shi, R. H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)

    Article  ADS  Google Scholar 

  22. Shi, R. H., Zhang, S.: Quantum solution to a class of two-party private summation problems. Quantum Inf. Process 16(9), 225 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Zhang, C., Situ, H., Huang, Q., Yang, P.: Multi-party quantum summation without a trusted third party based on single particles. Int. J. Quantum Inf.: 1750010 (2017)

  24. Liu, W., Wang, Y. B., Fan, W. Q.: An novel protocol for the quantum secure multi-party summation based on two-particle bell states. Int. J. Theor. Phys. 56(9), 2783–2791 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, H. Y., Ye, T. Y.: Secure multi-party quantum summation based on quantum fourier transform. Quantum Inf. Process 17(6), 129 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Ji, Z., Zhang, H., Wang, H., Wu, F., Jia, J., Wu, W.: Quantum protocols for secure multi-party summation. Quantum Inf. Process 18(6), 168 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurášek, J., Polzik, E.S.: Experimental demonstration of quantum memory for light. Nature 432 (7016), 482 (2004)

    Article  ADS  Google Scholar 

  28. Yao, X. C., Wang, T. X., Xu, P., Lu, H., Pan, G. S., Bao, X. H., Peng, C. Z., Lu, C. Y., Chen, Y. A., Pan, J. W.: Observation of eight-photon entanglement. Nature Photonics 6(4), 225 (2012)

    Article  ADS  Google Scholar 

  29. Nielson, M. A., Chuang, I.L.: Quantum computation and quantum information (2000)

  30. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. In: 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM’07), pp 10–10. IEEE (2007)

  31. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phy. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  32. Jian, W., Sheng, Z., Quan, Z., Chao-Jing, T.: Semiquantum key distribution using entangled states. Chinese Phys. Lett. 28(10), 100301 (2011)

    Article  Google Scholar 

  33. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)

    Article  ADS  Google Scholar 

  34. Li, Q., Chan, W. H., Zhang, S.: Semiquantum key distribution with secure delegated quantum computation. Scientific Reports 6, 19898 (2016)

    Article  ADS  Google Scholar 

  35. Liu, Z.R., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Annalen der Physik 530(4), 1700206 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82, 022303 (2010)

    Article  ADS  Google Scholar 

  37. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(05), 1250050 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, L., Qiu, D., Mateus, P.: Quantum secret sharing with classical bobs. J. Phys. A: Mathematical and Theoretical 46(4), 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 11(05), 1350052 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chou, W. H., Hwang, T., Gu, J.: Semi-quantum private comparison protocol under an almost-dishonest third party. arXiv:1607.07961 (2016)

  41. Yan-Feng, L.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 57(10), 3048–3055 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lin, P. H., Hwang, T., Tsai, C. W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process 18(7), 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  43. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process 16(12), 295 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  45. Cai, Q. Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1-2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  46. Kraus, B., Tittel, W., Gisin, N., Nilsson, M., Kröll, S., Cirac, J.: Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening. Phys. Rev. A 73(2), 020302 (2006)

    Article  ADS  Google Scholar 

  47. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  48. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  49. Gu, J., Ho, C. Y., Hwang, T.: Statistics attack on ’quantum private comparison with a malicious third party’and its improvement. Quantum Inf. Process 17(2), 23 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61902132, 11647140, and 61872152), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515011985), the Natural Science Foundation of Guangdong Province of China (Grant No. 2018A030310147), the Shenzhen Polytechnic Youth Innovation Project (Grant Nos. 6019310010K0 and 6019310007K0), and the Shenzhen Technical Project (No. JCYJ20190809152003992).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Huang, Q., Long, Y. et al. Secure Three-Party Semi-quantum Summation Using Single Photons. Int J Theor Phys 60, 3478–3487 (2021). https://doi.org/10.1007/s10773-021-04921-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04921-x

Keywords

Navigation