Skip to main content

Advertisement

Log in

Operation optimization of the steel manufacturing process: A brief review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Against the realistic background of excess production capacity, product structure imbalance, and high material and energy consumption in steel enterprises, the implementation of operation optimization for the steel manufacturing process is essential to reduce the production cost, increase the production or energy efficiency, and improve production management. In this study, the operation optimization problem of the steel manufacturing process, which needed to go through a complex production organization from customers’ orders to workshop production, was analyzed. The existing research on the operation optimization techniques, including process simulation, production planning, production scheduling, interface scheduling, and scheduling of auxiliary equipment, was reviewed. The literature review reveals that, although considerable research has been conducted to optimize the operation of steel production, these techniques are usually independent and unsystematic. Therefore, the future work related to operation optimization of the steel manufacturing process based on the integration of multi technologies and the intersection of multi disciplines were summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.Q. Sun, Q. Wang, Y. Zhou, and J.Z. Wu, Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives, Appl. Energy, 268(2020), art. No. 114946.

  2. Y. Xing, W.B. Zhang, W. Su, W. Wen, X.J. Zhao, and J.X. Yu, Research of ultra-low emission technologies of the iron and steel industry in China, Chin. J. Eng., 43(2021), No. 1, p. 1.

    Google Scholar 

  3. H. Lasi, P. Fettke, H. G. Kemper, T. Feld, and M. Hoffmann, Industry 4.0, Bus. Inf. Syst. Eng., 6(2014), No. 4, p. 239.

    Article  Google Scholar 

  4. R.Y. Yin, Metallurgical Process Engineering. Springer-Verlag, Berlin, Heidelberg, 2011.

    Book  Google Scholar 

  5. X.F. Li, L.Y. Xu, H.H. Shao, and D.X. Ren, Modeling and simulation of physical distribution system using Petri net & COM, Inf. Control, 30(2001), No. 3, p. 284.

    Google Scholar 

  6. Y.Q. Zhao, L. Guo, G.H. Bi, and D.F. Zhu, Analysis and design of steel-making complex logistics system based on multi-Agent, Metall. Ind. Autom., 36(2012), No. 2, p. 1.

    Google Scholar 

  7. Z. Zheng, L.M. He, and X.Q. Gao, Cellular automata model for simulating logistics system in steel-making process, Iron Steel, 39(2004), No. 11, p. 75.

    Google Scholar 

  8. M.P. Fanti, G. Iacobellis, G. Rotunno, and W. Ukovich, A simulation based analysis of production scheduling in a steel-making and continuous casting plant, [in] 2013 IEEE International Conference on Automation Science and Engineering (CASE). Madison, 2013, p. 150.

  9. M.P. Fanti, G. Rotunno, G. Stecco, W. Ukovich, and S. Mininel, An integrated system for production scheduling in steel-making and casting plants, IEEE Trans. Autom. Sci. Eng., 13(2016), No. 2, p. 1112.

    Article  Google Scholar 

  10. S.H. Melouk, N.K. Freeman, D. Miller, and M. Dunning, Simulation optimization-based decision support tool for steel manufacturing, Int. J. Prod. Econ., 141(2013), No. 1, p. 269.

    Article  Google Scholar 

  11. S. Deng, A.J. Xu, and H.B. Wang, Simulation study on steel plant capacity and equipment efficiency based on plant simulation, Steel Res. Int., 90(2019), No. 5, art. No. 1800507.

  12. S.P. Wu, A.J. Xu, W. Song, and X.P. Li, Structural optimization of the production process in steel plants based on Flex-Sim simulation, Steel Res. Int., 90(2019), No. 10, art. No. 1900201.

  13. N.M.Z.N. Mohamed, M.F.F.A. Rashid, A.N.M. Rose, and W.Y. Ting, Production layout improvement for steel fabrication works, J. Ind. Intell. Inf., 3(2015), No. 2, p. 133.

    Google Scholar 

  14. L.F. Gelders and L.N. van Wassenhove, Production planning: A review, Eur. J. Oper. Res., 7(1981), No. 2, p. 101.

    Article  Google Scholar 

  15. S.X. Liu, J.F. Tang, and J.H. Song, Order-planning model and algorithm for manufacturing steel sheets, Int. J. Prod. Econ., 100(2006), No. 1, p. 30.

    Article  Google Scholar 

  16. C.Y. Yu, M.R. Xu, and R.X. Qu, On the production order planning of integrated steel production SM-CC-HR-FF, J. Northeast. Univ. Nat. Sci., 29(2008), No. 11, p. 1548.

    Google Scholar 

  17. C.Y. Yu and C.E. Wang, Multi-objective order-planning model and algorithm for integrated steel production, Control Theory Appl., 26(2009), No. 12, p. 1452.

    Google Scholar 

  18. B. Zhang, G.S. Wang, Y. Yang, and S. Zhang, Solving the order planning problem at the steelmaking shops by considering logistics balance on the plant-wide process, IEEE Access, 7(2019), p. 139938.

    Article  Google Scholar 

  19. J.H. Lin, M. Liu, J.H. Hao, and P. Gu, Many-objective harmony search for integrated order planning in steelmaking-continuous casting-hot rolling production of multi-plants, Int. J. Prod. Res., 55(2017), No. 14, p. 4003.

    Article  Google Scholar 

  20. A. Gargani and P. Refalo, An efficient model and strategy for the steel mill slab design problem. [in] C. Bessière ed., Principles and Practice of Constraint Programming — CP 2007, Lecture Notes in Computer Science, Vol. 4741, Springer, Berlin, Heidelberg, 2007, p. 77.

    Chapter  Google Scholar 

  21. P. van Hentenryck and L. Michel, The steel mill slab design problem revisited, [in] L. Perron and M.A. Trick eds., Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, Vol. 5015, Springer, Berlin, Heidelberg, 2008, p. 377.

    Chapter  Google Scholar 

  22. W.X. Zhang and T.K. Li, Modelling and algorithm for the slab designing problem based on constraint satisfaction, J. Univ. Sci. Technol. Beijing, 33(2011), No. 5, p. 641.

    Google Scholar 

  23. S. Dash, J. Kalagnanam, C. Reddy, and S.H. Song, Production design for plate products in the steel industry, IBM J. Res. Dev., 51(2007), No. 3.4, p. 345.

    Article  Google Scholar 

  24. J. Wy and B.I. Kim, Two-staged guillotine cut, two-dimensional bin packing optimisation with flexible bin size for steel mother plate design, Int. J. Prod. Res., 48(2010), No. 22, p. 6799.

    Article  Google Scholar 

  25. S. Heinz, T. Schlechte, R. Stephan, and M. Winkler, Solving steel mill slab design problems, Constraints, 17(2012), No. 1, p. 39.

    Article  Google Scholar 

  26. W.Z. Hu, Z. Zheng, J.Y. Long, and X.Q. Gao, Modeling and solving cutting stock problem considering specification uncertainties of mother plate and slab of medium and heavy plate, Comput. Integr. Manuf. Sys., 23(2017), No. 11, p. 2508.

    Google Scholar 

  27. Z. Zheng, W.Z. Hu, J.Y. Long, and X.Q. Gao, Research and application for medium steel plate-slab design system, J. Northeast. Univ. Nat. Sci., 38(2017), No. 10, p. 1405.

    Google Scholar 

  28. Z. Zheng, Y.Z. Wang, Y. Lu, and X.Q. Gao, Intelligent optimization model and system of plate and slab design of medium steel plate, Iron Steel, 55(2020), No. 4, p. 53.

    Google Scholar 

  29. L.X. Tang and G.S. Wang, Decision support system for the batching problems of steelmaking and continuous-casting production, Omega, 36(2008), No. 6, p. 976.

    Article  Google Scholar 

  30. L.X. Tang, G.S. Wang, J.Y. Liu, and J.Y. Liu, A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous-casting production, Nav. Res. Logist., 58(2011), No. 4, p. 370.

    Article  CAS  Google Scholar 

  31. H.Y. Dong, M. Huang, W.H. Ip, and X.W. Wang, On the integrated charge planning with flexible jobs in primary steel-making processes, Int. J. Prod. Res., 48(2010), No. 21, p. 6499.

    Article  Google Scholar 

  32. C.X. Li, B.L. Yuan, J.H. Ren, L.L. Sun, and J. Wang, Research on optimization of charge batch planning based on augmented Lagrangian relaxation algorithm, IFAC-PpprssOn-Line, 52(2019), No. 1, p. 814.

    Article  Google Scholar 

  33. F. Yuan, S.P. Wu, W. Song, and A.J. Xu, Charge plan model for steelmaking-continuous casting section, Metals, 10(2020), No. 9, art. No. 1196.

  34. L.X. Tang and J.X. Luo, A new ILS algorithm for cast planning problem in steel industry, ISIJ Int., 47(2007), No. 3, p. 443.

    Article  CAS  Google Scholar 

  35. F. Yang, Q.Q. Li, S. Liu, and G.R. Wang, Hybrid heuristic-cross entropy algorithm for cast planning problem, Comput. Integr. Manuf. Syst., 20(2014), No. 9, p. 2241.

    Google Scholar 

  36. F. Yang, Q.Q. Li, and G.R. Wang, Hybrid improved algorithm for cast planning problem with flexible width, Control Decis., 30(2015), No. 2, p. 348.

    Google Scholar 

  37. J. Yi, S.B. Tan, W.G. Li, and B. Du, Hybrid optimization algorithm for solving combining tundish MTSP model on continuous casting plan, J. Northeast. Univ. Nat. Sci., 33(2012), No. 9, p. 1235.

    Google Scholar 

  38. Y.C. Xue, D.L. Zheng, and Q.W. Yang, Optimum steel making cast plan with unknown cast number based on the modified discrete particle swarm optimization, Control Theory Appl., 27(2010), No. 2, p. 273.

    Google Scholar 

  39. L.X. Tang, G.S. Wang, and Z.L. Chen, Integrated charge batching and casting width selection at Baosteel, Oper. Res., 62(2014), No. 4, p. 772.

    Article  Google Scholar 

  40. J.Y. Long, Z.Z. Sun, H.B. Chen, Y. Bai, and Y. Hong, Variable neighborhood search for integrated determination of charge batching and casting start time in steel plants, J. Intell. Fuzzy Syst., 34(2018), No. 6, p. 3821.

    Article  Google Scholar 

  41. W.J. Xu, L.X. Tang, and E.N. Pistikopoulos, Modeling and solution for steelmaking scheduling with batching decisions and energy constraints, Comput. Chem. Eng., 116(2018), p. 368.

    Article  CAS  Google Scholar 

  42. W.J. Xu, F. Zou, and L.X. Tang, A subpopulation-based differential evolution algorithm for scheduling with batching decisions in steelmaking-continuous casting production, [in] 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, 2016, p. 2784.

  43. E.D. Kosiba, J.R. Wright, and A.E. Cobbs, Discrete event sequencing as a traveling salesman problem, Comput. Ind., 19(1992), No. 3, p. 317.

    Article  Google Scholar 

  44. I.C. Ozsoy, G.E. Ruddle, and A.F. Crawley, Optimum scheduling of a hot rolling process by nonlinear programming, Can. Metall. Q., 31(1992), No. 3, p. 217.

    Article  Google Scholar 

  45. L.X. Tang, J.Y. Liu, A.Y. Rong, and Z.H. Yang, A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex, Eur. J. Oper. Res., 124(2000), No. 2, p. 267.

    Article  Google Scholar 

  46. S.J. Jia, J. Yi, G.K. Yang, B. Du, and J. Zhu, A multi-objective optimisation algorithm for the hot rolling batch scheduling problem, Int. J. Prod. Res., 51(2013), No. 3, p. 667.

    Article  Google Scholar 

  47. K. Puttkammer, M.G. Wichmann, and T.S. Spengler, A GRASP heuristic for the hot strip mill scheduling problem under consideration of energy consumption, J. Bus. Econ., 86(2016), No. 5, p. 537.

    Google Scholar 

  48. W.Z. Hu, Z. Zheng, X.Q. Gao, and P.M. Pardalos, An improved method for the hot strip mill production scheduling problem, Int. J. Prod. Res., 57(2019), No. 10, p. 3238.

    Article  Google Scholar 

  49. R. Zhang, S.J. Song, and C. Wu, Robust scheduling of hot rolling production by local search enhanced ant colony optimization algorithm, IEEE Trans. Ind. Inform., 16(2020), No. 4, p. 2809.

    Article  Google Scholar 

  50. L.L. Liu, X. Wan, Z.G. Gao, X.L. Li, and B.W. Feng, Research on modelling and optimization of hot rolling scheduling, J. Ambient Intell. Human. Comput., 10(2019), No. 3, p. 1201.

    Article  Google Scholar 

  51. M. Pinedo and K. Hadavi, Scheduling: Theory, algorithms and systems development. [in] Gaul W., A. Bachem, W. Habenicht, W. Runge, and W.W. Stahl eds. Operations Research Proceedings, Springer, Berlin, Heidelberg, 1991, p. 35.

    Google Scholar 

  52. D. Ouelhadj and S. Petrovic, A survey of dynamic scheduling in manufacturing systems, J. Sched., 12(2009), No. 4, p. 417.

    Article  Google Scholar 

  53. A. Bellabdaoui and J. Teghem, A mixed-integer linear programming model for the continuous casting planning, Int. J. Prod. Econ., 104(2006), No. 2, p. 260.

    Article  Google Scholar 

  54. I. Harjunkoski and I.E. Grossmann, A decomposition approach for the scheduling of a steel plant production, Comput. Chem. Eng., 25(2001), No. 11–12, p. 1647.

    Article  CAS  Google Scholar 

  55. L.X. Tang, P.B. Luh, J.Y. Liu, and L. Fang, Steel-making process scheduling using Lagrangian relaxation, Int. J. Prod. Res., 40(2002), No. 1, p. 55.

    Article  Google Scholar 

  56. K. Mao, Q.K. Pan, X.F. Pang, and T.Y. Chai, A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process, Eur. J. Oper. Res., 236(2014), No. 1, p. 51.

    Article  Google Scholar 

  57. H.J. Cui and X.C. Luo, An improved Lagrangian relaxation approach to scheduling steelmaking-continuous casting process, Comput. Chem. Eng., 106(2017), p. 133.

    Article  CAS  Google Scholar 

  58. Q.K. Pan, L. Wang, K. Mao, J.H. Zhao, and M. Zhang, An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process, IEEE Trans. Autom. Sci. Eng., 10(2013), No. 2, p. 307.

    Article  Google Scholar 

  59. J.Y. Long, Z. Zheng, X.Q. Gao, and P.M. Pardalos, Scheduling a realistic hybrid flow shop with stage skipping and adjustable processing time in steel plants, Appl. Soft Comput., 64(2018), p. 536.

    Article  Google Scholar 

  60. K. Worapradya and P. Thanakijkasem, Proactive scheduling for steelmaking-continuous casting plant with uncertain machine breakdown using distribution-based robustness and decomposed artificial neural network, Asia Pac. J. Oper. Res., 32(2015), No. 2, art. No. 1550010.

  61. M.H. Fazel Zarandi and F. Dorry, A hybrid fuzzy PSO algorithm for solving steelmaking-continuous casting scheduling problem, Int. J. Fuzzy Syst., 20(2018), No. 1, p. 219.

    Article  Google Scholar 

  62. S.P. Yu and Q.K. Pan, A rescheduling method for operation time delay disturbance in steelmaking and continuous casting production process, J. Iron Steel Res. Int., 19(2012), No. 12, p. 33.

    Article  CAS  Google Scholar 

  63. L.X. Tang, Y. Zhao, and J.Y. Liu, An improved differential evolution algorithm for practical dynamic scheduling in steel-making-continuous casting production, IEEE Trans. Evol. Comput., 18(2014), No. 2, p. 209.

    Article  Google Scholar 

  64. K. Mao, Q.K. Pan, X.F. Pang, and T.Y. Chai, An effective Lagrangian relaxation approach for rescheduling a steelmaking-continuous casting process, Control Eng. Pract., 30(2014), p. 67.

    Article  Google Scholar 

  65. J.Y. Long, Z. Zheng, and X.Q. Gao, Dynamic scheduling in steelmaking-continuous casting production for continuous caster breakdown, Int. J. Prod. Res., 55(2017), No. 11, p. 3197.

    Article  Google Scholar 

  66. K.K. Peng, Q.K. Pan, L. Gao, B. Zhang, and X.F. Pang, An improved artificial bee colony algorithm for real-world hybrid flowshop rescheduling in steelmaking-refining-continuous casting process, Comput. Ind. Eng., 122(2018), p. 235.

    Article  Google Scholar 

  67. S. Rahal, Z.K. Li, and D.J. Papageorgiou, Proactive and reactive scheduling of the steelmaking and continuous casting process through adaptive robust optimization, Comput. Chem. Eng., 133(2020), art. No. 106658.

  68. H. Hadera, I. Harjunkoski, G. Sand, I.E. Grossmann, and S. Engell, Optimization of steel production scheduling with complex time-sensitive electricity cost, Comput. Chem. Eng., 76(2015), p. 117.

    Article  CAS  Google Scholar 

  69. Y.Y. Tan, M.C. Zhou, Y. Zhang, X.W. Guo, L. Qi, and Y.H. Wang, Hybrid scatter search algorithm for optimal and energy-efficient steelmaking-continuous casting, IEEE Trans. Autom. Sci. Eng., 17(2020), No. 4, p. 1814.

    Article  Google Scholar 

  70. Z.J. Xu, Z. Zheng, and X.Q. Gao, Energy-efficient steelmaking-continuous casting scheduling problem with temperature constraints and its solution using a multi-objective hybrid genetic algorithm with local search, Appl. Soft Comput., 95(2020), art. No. 106554.

  71. G.S. Wang and L.X. Tang, A column generation for locomotive scheduling problem in molten iron transportation, [in] 2007 IEEE International Conference on Automation and Logistics. Jinan, 2007, p. 2227.

  72. H. Huang, T.Y. Chai, X.C. Luo, B.L. Zheng, and H. Wang, Two-stage method and application for molten iron scheduling problem between iron-making plants and steel-making plants, IFAC Proc. Vol., 44(2011), No. 1, p. 9476.

    Article  Google Scholar 

  73. B. Ge, K. Wang, and Y. Han, A design for simulation model and algorithm of rail transport of molten iron in steel enterprise, Comput. Mod. New Technol., 18(2014), No. 11, p. 1056.

    Google Scholar 

  74. Y.Y. Liu and G.S. Wang, The mix integer programming model for torpedo car scheduling in iron and steel industry, [in] Proceedings of the International Conference on Computer Information Systems and Industrial Applications, Atlantis Press, Bangkok, 2015, p. 731.

    Google Scholar 

  75. L.X. Tang, G.S. Wang, and J.Y. Liu, A branch-and-price algorithm to solve the molten iron allocation problem in iron and steel industry, Comput. Oper. Res., 34(2007), No. 10, p. 3001.

    Article  Google Scholar 

  76. H. Huang, T.Y. Chai, B.L. Zheng, and X.C. Luo, Research on the molten iron scheduling system oriented to iron-steel correspondence and its application, J. Northeast. Univ. Nat. Sci., 31(2010), No. 11, p. 1525.

    Google Scholar 

  77. H. Huang, T.Y. Chai, B.L. Zheng, X.C. Luo, and H. Zhang, Two-stage case-based reasoning for molten iron dynamic scheduling system oriented iron-steel correspondence, CIESC J., 61(2010), No. 8, p. 2021.

    CAS  Google Scholar 

  78. S.S. Ning, W. Wang, and Q.L. Liu, An optimal scheduling algorithm for reheating furnace in steel production, Control Decis., 21(2006), No. 10, p. 1138.

    Google Scholar 

  79. J.S. Broughton, M. Mahfouf, and D.A. Linkens, A paradigm for the scheduling of a continuous walking beam reheat furnace using a modified genetic algorithm, Mater. Manuf. Process., 22(2007), No. 5, p. 607.

    Article  CAS  Google Scholar 

  80. Y.J. Yang, Z.Y. Jiang, and X.X. Zhang, Model and algorithm of furnace area production scheduling in slab hot rolling, J. Univ. Sci. Technol. Beijing, 34(2012), No. 7, p. 841.

    CAS  Google Scholar 

  81. L.X. Tang, H.Z. Ren, and Y. Yang, Reheat furnace scheduling with energy consideration, Int. J. Prod. Res., 53(2015), No. 6, p. 1642.

    Article  Google Scholar 

  82. Q. Ilmer, S. Haeussler, and H. Missbauer, Optimal synchronization of the hot rolling stage in steel production, IFAC-PapersOnLine, 52(2019), No. 13, p. 1615.

    Article  Google Scholar 

  83. L.X. Tang and X.P. Wang, A two-phase heuristic for the production scheduling of heavy plates in steel industry, IEEE Trans. Control Syst. Technol., 18(2010), No. 1, p. 104.

    Article  Google Scholar 

  84. K. Li and H.X. Tian, Integrated scheduling of reheating furnace and hot rolling based on improved multiobjective differential evolution, Complexity, 2018(2018), art. No. 1919438.

  85. B.L. Wang, K. Huang, and T.K. Li, Two-stage hybrid flow-shop scheduling with simultaneous processing machines, J. Sched., 21(2018), No. 4, p. 387.

    Article  Google Scholar 

  86. T. Tanizaki, T. Tamura, H. Sakai, Y. Takahashi, and T. Imai, A Heuristic Scheduling Algorithm for steel making process with crane handling, J. Oper. Res. Soc. Jpn., 49(2006), No. 3, p. 188.

    Google Scholar 

  87. Z. Zheng, L. Xu, and X.Q. Gao, Simulation model of crane scheduling in workshop based on cellular automata, Syst. Eng. Theory Pract., 28(2008), No. 2, p. 137.

    Google Scholar 

  88. Z. Zheng, C. Zhou, and K. Chen, Crane scheduling simulation model based on immune genetic algorithms, Syst. Eng. Theory Pract., 33(2013), No. 1, p. 223.

    Google Scholar 

  89. X.Q. Gao, P. Li, J.Y. Long, and Z. Zheng, Multi-objective modelling and solving for crane scheduling with spatio-temporal constraints in casting workshop, Syst. Eng. Theory Pract., 37(2017), No. 9, p. 2373.

    Google Scholar 

  90. J. Li, A.J. Xu, and X.S. Zang, Simulation-based solution for a dynamic multi-crane-scheduling problem in a steelmaking shop, Int. J. Prod. Res., 58(2020), No. 22, p. 6970.

    Article  Google Scholar 

  91. L.X. Tang, X. Xie, and J.Y. Liu, Crane scheduling in a warehouse storing steel coils, IIE Trans., 46(2014), No. 3, p. 267.

    Article  Google Scholar 

  92. X. Xie, Y.Y. Zheng, and Y.P. Li, Multi-crane scheduling in steel coil warehouse, Expert Syst. Appl., 41(2014), No. 6, p. 2874.

    Article  Google Scholar 

  93. G.N. Maschietto, Y. Ouazene, M.G. Ravetti, M.C. de Souza, and F. Yalaoui, Crane scheduling problem with non-interference constraints in a steel coil distribution centre, Int. J. Prod. Res., 55(2017), No. 6, p. 1607.

    Article  Google Scholar 

  94. S. Kuyama and S. Tomiyama, A crane guidance system with scheduling optimization technology in a steel slab yard, ISIJ Int., 56(2016), No. 5, p. 820.

    Article  CAS  Google Scholar 

  95. G.D. Zhao, J.Y. Liu, L.X. Tang, R. Zhao, and Y. Dong, Model and heuristic solutions for the multiple double-load crane scheduling problem in slab yards, IEEE Trans. Autom. Sci. Eng., 17(2020), No. 3, p. 1307.

    Article  CAS  Google Scholar 

  96. X. Wang, M.C. Zhou, Q.H. Zhao, S.X. Liu, X.W. Guo, and L. Qi, A branch and price algorithm for crane assignment and scheduling in slab yard, IEEE Trans. Autom. Sci. Eng., (2020). DOI: https://doi.org/10.1109/TASE.2020.2996227

  97. X.Y. Wang, W. Liu, B.L. Zheng, and T.Y. Chai, Design and development of ladle scheduling software for steelmaking and continuous casting, J. Syst. Simul., 19(2007), No. 13, p. 2913.

    CAS  Google Scholar 

  98. Y.Y. Tan, Z. Wei, S. Wang, W. Zhou, and S.X. Liu, Optimization algorithm for ladle scheduling based on the VRPTW-AT model, J. Syst. Eng., 28(2013), No. 1, p. 94.

    Google Scholar 

  99. Z. Wei, T. Zhu, T.Z. He, and S.X. Liu, A fast heuristic algorithm for ladle scheduling based on vehicle routing problem with time windows model, ISIJ Int., 54(2014), No. 11, p. 2588.

    Article  CAS  Google Scholar 

  100. Y.Y. Tan, T.C.E. Cheng, and M. Ji, A multi-objective scatter search for the ladle scheduling problem, Int. J. Prod. Res., 52(2014), No. 24, p. 7513.

    Article  Google Scholar 

  101. W. Liu, X.F. Pang, and T.Y. Chai, Research on the dephosphorization ladle scheduling algorithm of steelmaking-refining-continuous casting process, Control Eng. China, 26(2019), No. 4, p. 790.

    Google Scholar 

  102. W. Liu, X.F. Pang, S.P. Yu, C.X. Li, and T.Y. Chai, Steelmaking-casting of molten steel by decarburization ladle matching, Math. Probl. Eng., 2018(2018), p. 1.

    Google Scholar 

  103. W. Song, A.J. Xu, K. Feng, S.P. Wu, and X.S. Zang, Batch planning model and genetic algorithm for steelmaking and continuous casting, [in] 2019 The China Automation Congress (CAC), Hangzhou, 2019, p. 257.

  104. W.X. Zhang and T.K. Li, Batch plan optimization of steel integrated production with multiple processes, Comput. Integr. Manuf. Syst., 19(2013), No. 6, p. 1296.

    Google Scholar 

  105. W.X. Zhang and T.K. Li, Integrated batch planning optimization based on particle swarm optimization and constraint satisfaction for steel production, Comput. Integr. Manuf. Syst., 16(2010), No. 4, p. 840.

    Google Scholar 

  106. Y. Xu, F. Liu, G.H. Huang, and G.H. Cheng, An optimization model under interval and fuzzy uncertainties for a by-product gas system of an iron and steel plant, Eng. Optim., 51(2019), No. 3, p. 447.

    Article  Google Scholar 

  107. J.G.C. Pena, V.B. de Oliveira Junior, and J.L.F. Salles, Optimal scheduling of a by-product gas supply system in the iron- and steel-making process under uncertainties, Comput. Chem. Eng., 125(2019), p. 351.

    Article  CAS  Google Scholar 

  108. Z.Q. Wei, X.Q. Zhai, Q. Zhang, G. Yang, T. Du, and J.Q. Wei, A MINLP model for multi-period optimization considering couple of gas-steam-electricity and time of use electricity price in steel plant, Appl. Therm. Eng., 168(2020), art. No. 114834.

  109. Z.Y. Han, J. Zhao, and W. Wang, An optimized oxygen system scheduling with electricity cost consideration in steel industry, IEEE/CAA J. Autom. Sin., 4(2017), No. 2, p. 216.

    Article  Google Scholar 

  110. Z.Y. Han, J. Zhao, W. Wang, and Y. Liu, A two-stage method for predicting and scheduling energy in an oxygen/nitrogen system of the steel industry, Control Eng. Pract., 52(2016), p. 35.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51734004), the National Key Research and Development Program of China (No. 2017YFB0304005), and the National Natural Science Foundation of China (No. 51474044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Zj., Zheng, Z. & Gao, Xq. Operation optimization of the steel manufacturing process: A brief review. Int J Miner Metall Mater 28, 1274–1287 (2021). https://doi.org/10.1007/s12613-021-2273-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2273-7

Keywords

Navigation