Skip to main content

Advertisement

Log in

Mathematical Modelling of Pattern Sublimation in Rapid Ice Investment Casting

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Investment Casting (IC), using the wax pattern, produces metal parts with a high surface finish and complex geometries within acceptable tolerances. However, removing the wax patterns can have processing challenges, such as thermal expansion during wax melting for pattern removal leading to shell cracking defects, the release of hydrocarbons from melting wax, and the burnt residue from this process. To overcome these challenges, it has been proposed to replace wax with ice as a pattern material. Ice has an inherent benefit of reduction of volume during its phase change from solid to liquid. It helps to reduce cracking due to expansion. Rapid Freeze Prototyping (RFP) and Freeze Cast Process (FCP) can produce the ice pattern. In the process of Rapid Ice Investment Casting (RIIC), the ice pattern is invested with a low-temperature ceramic slurry to make ceramic shells for metal casting. Sublimation is used for ice pattern evacuation at sub-zero conditions using a vacuum. Estimating various properties like time for total sublimation, concentration gradient, and energy usage are vital for process characterization and optimization. A diffusion-based mathematical model has been proposed and experimentally verified to sublimate the ice patterns in this research. Experimental results show a close correlation (96.74%) with the theoretical model. The demonstration of ice investment casting has been carried out, and it reported close dimensional accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. S. Kumar, D.B. Karunakar, Int. J. Met. 15, 98–107 (2021). https://doi.org/10.1007/s40962-020-00421-6

    Article  CAS  Google Scholar 

  2. M.P. Groover, Fundamentals of Modern Manufacturing, 4th edn. (Wiley, Hoboken, 2010), pp. 225–253

    Google Scholar 

  3. D. Almonti, N. Ucciardello, Materials 12, 2261–2274 (2019). https://doi.org/10.3390/ma12142261

    Article  CAS  Google Scholar 

  4. D. Almonti, G. Baiocco, V. Tagliaferri, N. Ucciardello, Materials 13, 1085–1096 (2020). https://doi.org/10.3390/ma13051085

    Article  CAS  Google Scholar 

  5. D. Almonti, G. Baiocco, E. Mingione, N. Ucciardello, Int. J. Adv. Manuf. Technol. 111, 1157–1172 (2020). https://doi.org/10.1007/s00170-020-06092-1

    Article  Google Scholar 

  6. C. Liu, F. Wang, S. Jin, F. Li, X. Lai, Int. J. Met. 13, 953–968 (2019). https://doi.org/10.1007/s40962-019-00317-0

    Article  Google Scholar 

  7. Druschitz EA. Investment shell cracking. Missouri University of Science and Technology; 2009. https://scholarsmine.mst.edu/masters_theses/5003. Accessed 20 June 2020

  8. H. Zhao, P.K. Nam, V.L. Richards, S.N. Lekakh, Int. J. Met. 13, 18–25 (2019). https://doi.org/10.1007/s40962-018-0240-5

    Article  CAS  Google Scholar 

  9. W. Everhart, S. Lekakh, V. Richards, J. Chen, H. Li, K. Chandrashekhara, Int. J. Met. 7, 21–27 (2013). https://doi.org/10.1007/BF03355541

    Article  Google Scholar 

  10. Yodice DB. U. S. Patent 5,072,770, 17 Dec 1991

  11. Q. Liu, M.C. Leu, Int. J. Adv. Manuf. Technol. 29, 317–335 (2006). https://doi.org/10.1007/s00170-005-2523-2

    Article  Google Scholar 

  12. Liu Q, Leu MC. In: International solid freeform fabrication symposium, 2004. https://doi.org/10.26153/tsw/7025

  13. Q.B. Liu, M.C. Leu, V.L. Richards, Int. J. Cast Met. Res. 20, 14–24 (2007). https://doi.org/10.1179/136404607X202708

    Article  CAS  Google Scholar 

  14. M.C. Leu, Q. Liu, F.D. Bryant, CIRP Ann. 12, 185–188 (2003). https://doi.org/10.1016/S0007-8506(07)60561-7

    Article  Google Scholar 

  15. L. Qingbin, G. Sui, M.C. Leu, Comput. Ind. 48, 181–197 (2002). https://doi.org/10.1016/S0166-3615(02)00042-8

    Article  Google Scholar 

  16. P. Kamble, S. Chavan, K.P. Karunakaran, J. Emerg. Technol. 5, 119–131 (2018)

    Google Scholar 

  17. J.C. Kasper, G. Winter, W. Friess, Eur. J. Pharm. Biopharm. 85, 162–169 (2013). https://doi.org/10.1016/j.ejpb.2013.05.019

    Article  CAS  Google Scholar 

  18. M. Xu, S.N. Lekakh, V.L. Richards, Int. J. Met. 10, 329–337 (2016). https://doi.org/10.1007/s40962-016-0052-4

    Article  Google Scholar 

  19. K.J. Kossacki, K. Misiura, L. Czechowski, Icarus 329, 72–78 (2019). https://doi.org/10.1016/j.icarus.2019.03.019

    Article  CAS  Google Scholar 

  20. V. Chevrier, D.R. Ostrowski, D.W.G. Sears, Icarus 196, 459–476 (2008). https://doi.org/10.1016/j.icarus.2008.03.009

    Article  CAS  Google Scholar 

  21. V. Chevrier, D.W.G. Sears, J.D. Chittenden, L.A. Roe, R. Ulrich, K. Bryson, L. Billingsley, J. Hanley, Geophys. Res. Lett. 34, 3–7 (2007). https://doi.org/10.1029/2006GL028401

    Article  Google Scholar 

  22. S. Kumar, D.B. Karunakar, Int. J. Met. 13, 588–596 (2019). https://doi.org/10.1007/s40962-018-00297-7

    Article  CAS  Google Scholar 

  23. S. Kumar, D.B. Karunakar, Int. J. Met. 15, 98–107 (2020). https://doi.org/10.1007/s40962-020-00421-6

    Article  CAS  Google Scholar 

  24. Z.H. Wang, J. Wang, B. Yu, J. Wu, M. Wang, B. Su, Int. J. Met. 13, 74–81 (2019). https://doi.org/10.1007/s40962-018-0228-1

    Article  CAS  Google Scholar 

  25. G. Dietler, C. Aubert, D.S. Cannell, P. Wiltzius, Phys. Rev. Lett. 57, 3117–3121 (1986)

    Article  CAS  Google Scholar 

  26. Q. Liu, M.C. Leu, V.L. Richards, S.M. Schmitt, Int. J. Adv. Manuf. Technol. 24, 485–495 (2004). https://doi.org/10.1007/s00170-003-1635-9

    Article  Google Scholar 

  27. Y. Jing, L. Dehong, W. Zhao, J. Yehua, Int. J. Met. 9, 4 (2015). https://doi.org/10.1007/BF03356038

    Article  Google Scholar 

  28. T. Watts, C. Derksen, C.C. Canada, M. Sandells, Cryosphere 9, 5979–6002 (2015). https://doi.org/10.5194/tcd-9-5979-2015

    Article  Google Scholar 

  29. K. Goto, T. Hondoh, A. Higashi, Jpn. J. Appl. Phys. 25, 351–357 (1986). https://doi.org/10.1143/JJAP.25.351

    Article  CAS  Google Scholar 

  30. S. Pattnaik, D.B. Karunakar, P.K. Jha, J. Mater. Process. Technol. 212, 2332–2348 (2012). https://doi.org/10.1016/j.jmatprotec.2012.06.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the help extended by the Department of Chemical Engineering, IIT Bombay, regarding experimental work.

Funding

There are no financial conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Hodgir.

Ethics declarations

Conflicts of interest

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodgir, R., Mittal, Y.G., Kamble, P. et al. Mathematical Modelling of Pattern Sublimation in Rapid Ice Investment Casting. Inter Metalcast 16, 1002–1009 (2022). https://doi.org/10.1007/s40962-021-00665-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00665-w

Keywords

Navigation