Skip to main content

Advertisement

Log in

A Study on the Effect of Ageing Heat Treatment on Hardness, Tensile and Corrosion Behaviour of Stir-Cast AZ91D–5SiC–1Gr Hybrid Magnesium Composite

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this present study AZ91D magnesium alloy and AZ91D–5SiC–1Gr (wt%) hybrid metal matrix composite were produced through the stir casting process. Microstructural studies were carried out through X-ray diffraction (XRD), scanning electron microscope (SEM) and SEM with energy-dispersive X-ray analysis (EDAX). XRD study indicated the spinel crystal structure with double substitution of cubic and hexagonal closed pack materials. Ageing heat treatment comprising natural ageing (T4) and artificial ageing (T6) for 24 h was carried out on the materials. Both T4 and T6 heat-treated samples exhibited higher hardness than as-cast samples. Maximum hardness 88.8 ± 2.3 BHN and 129.9 ± 3.27 BHN were obtained for T6 heat-treated alloy and hybrid composite, respectively. Tensile properties of samples were evaluated by their stress–strain curves. Maximum values of ultimate tensile strength, yield strength (0.2%) and ductility obtained for T6 heat-treated hybrid composite were 193 MPa, 87.1 MPa and 11%, respectively. Corrosion behaviour of the samples was evaluated by the electrochemical polarization curves obtained through Tafel extrapolation method. Both the alloy and hybrid composite exhibited improved corrosion resistance as a result of natural ageing (T4) and artificial ageing (T6) heat treatment processes. Lowest corrosion rates 0.071 mm/year and 0.074 mm/year were obtained for AZ91D alloy and AZ91D–5SiC–1Gr (wt%) hybrid composite, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. H. Mohammadi, M. Emamy, Z. Hamnabard, The statistical analysis of tensile and compression properties of the as-cast AZ91-X%B4C composites. Inter. Metalcast. 14(2), 505–517 (2020)

    Article  CAS  Google Scholar 

  2. S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Nano-indentation and corrosion characteristics of ultrasonic vibration assisted stir-cast AZ31–WC–graphite nano-composites. Inter. Metalcast 15(3), 1058–1072 (2020). https://doi.org/10.1007/s40962-020-00538-8

    Article  CAS  Google Scholar 

  3. P. Ajay Kumar, P. Rohatgi, D. Weiss, 50 years of foundry-produced metal matrix composites and future opportunities. Inter. Metalcast. 14(2), 291–317 (2020)

    Article  CAS  Google Scholar 

  4. M. Khorasanian, M. Yeganeh, N. Gholamzadeh, S.R. Alavi Zaree, Effect of addition of silver and chilled casting on corrosion behavior of AZ91 magnesium alloy. Inter. Metalcast. (2021). https://doi.org/10.1007/s40962-020-00558-4

    Article  Google Scholar 

  5. M. Abbasi, B. Bagheri, M. Dadaei, H.R. Omidvar, M. Rezaei, The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface. Int. J. Adv. Manuf. Technol. 77(9–12), 2051–2058 (2015)

    Article  Google Scholar 

  6. W.T. Huo, X. Lin, S. Yu, Z.T. Yu, W. Zhang, Y.S. Zhang, Corrosion behavior and cytocompatibility of nano-grained AZ31 Mg alloy. J. Mater. Sci. 54(5), 4409–4422 (2019)

    Article  CAS  Google Scholar 

  7. E. Cevik, M. Gundogan, A. Incesu, M.E. Turan, Corrosion behavior of graphene nanoplatelet-coated TiB2 reinforced AZ91 magnesium matrix semi-ceramic hybrid composites. Hittite J. Sci. Eng. 8(1), 27–33 (2021)

    Article  Google Scholar 

  8. S.T. Selvamani, S. Premkumar, M. Vigneshwar, P. Hariprasath, K. Palanikumar, Influence of carbon nano tubes on mechanical, metallurgical and tribological behavior of magnesium nanocomposites. J. Magnes. Alloy. 5(3), 326–335 (2017)

    Article  CAS  Google Scholar 

  9. K. Soorya Prakash, P. Balasundar, S. Nagaraja, P.M. Gopal, V. Kavimani, Mechanical and wear behaviour of Mg–SiC–Gr hybrid composites. J. Magnes. Alloy. 4(3), 197–206 (2016)

    Article  CAS  Google Scholar 

  10. S. Aravindan, P.V. Rao, K. Ponappa, Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process. J. Magnes. Alloy. 3(1), 52–62 (2015)

    Article  CAS  Google Scholar 

  11. A.H. Jabbari, M. Sedighi, Investigation of electromagnetic and mechanical stirring sequence effects on production of magnesium matrix nanocomposite. Inter. Metalcast. 14(2), 489–504 (2020). https://doi.org/10.1007/s40962-019-00374-5

    Article  CAS  Google Scholar 

  12. S.B. Prabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J. Mater. Process. Technol. 171(2), 268–273 (2006)

    Article  CAS  Google Scholar 

  13. M.J. Shen, T. Ying, F.Y. Chen, J.M. Hou, Effects of hybrid SiCp on the microstructures and mechanical properties of AZ31B alloy. Inter. Metalcast. 11(2), 266–273 (2017). https://doi.org/10.1007/s40962-016-0050-6

    Article  Google Scholar 

  14. G. Cao, H. Konishi, X. Li, Recent developments on ultrasonic cavitation based solidification processing of bulk magnesium nanocomposites. Inter. Metalcast. 2(1), 57–65 (2008). https://doi.org/10.1007/BF03355422

    Article  CAS  Google Scholar 

  15. X. Liu, S. Jia, L. Nastac, Ultrasonic cavitation-assisted molten metal processing of cast A356-nanocomposites. Inter. Metalcast. 8(3), 51–58 (2014). https://doi.org/10.1007/BF033555

    Article  CAS  Google Scholar 

  16. N. Saikrishna, G.P.K. Reddy, B. Munirathinam, R. Dumpala, M. Jagannatham, B.R. Sunil, An investigation on the hardness and corrosion behavior of MWCNT/Mg composites and grain refined Mg. J. Magnes. Alloy. 6(1), 83–89 (2018)

    Article  CAS  Google Scholar 

  17. S. Li, L. Qi, T. Zhang, J. Zhou, H. Li, Evolution of interfacial microstructures and mechanical properties of Cf/AZ91 composite during heat treatment. Vacuum 145, 245–250 (2017)

    Article  CAS  Google Scholar 

  18. A. Dey and K. M. Pandey, Magnesium Metal Matrix Composites: A Review (2015).

  19. B. Stojanovic, M. Babic, S. Mitrovic, A. Vencl, N. Miloradovic, M. Pantic, Tribological characteristics of aluminium hybrid. J. Balk. Tribol. Assoc. 19(1), 83–96 (2013)

    CAS  Google Scholar 

  20. W. Li, J. Zhou, B. Ma, J. Wang, J. Wu, Y. Yang, Effect of graphite powder amount on surface films formed on molten AZ91D alloy. Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 48(5), 2564–2573 (2017)

    Article  CAS  Google Scholar 

  21. A. Incesu, A. Gungor, Mechanical properties and biodegradability of Mg–Zn–Ca alloys: homogenization heat treatment and hot rolling. J. Mater. Sci. Mater. Med. 31(12), 1–12 (2020)

    Article  Google Scholar 

  22. F. Czerwinskia, W. Kasprzak, Heat treatment of magnesium alloys: current capabilities. Mater. Sci. Forum 765, 466–470 (2013)

    Article  Google Scholar 

  23. I. Graydon, E. Beatty, S. Paul, M. N. Us, and J. A. Hauck, “(12) United States patent,” 1(12), (2006)

  24. M.E. Turan, Y. Sun, Y. Akgul, Y. Turen, H. Ahlatci, The effect of GNPs on wear and corrosion behaviors of pure magnesium. J. Alloys Compd. 724, 14–23 (2017)

    Article  CAS  Google Scholar 

  25. H. Zengin, Role of Sr in microstructure, hardness and biodegradable behavior of cast Mg–2Zn–2Ca–0.5Mn (ZXM220) alloy for potential implant application. Inter. Metalcast. 14(2), 442–453 (2020). https://doi.org/10.1007/s40962-019-00366-5

    Article  CAS  Google Scholar 

  26. A. Incesu, A. Gungor, Biocorrosion and mechanical properties of ZXM100 and ZXM120 magnesium alloys. Inter. Metalcast. 13(4), 905–914 (2019). https://doi.org/10.1007/s40962-019-00308-1

    Article  CAS  Google Scholar 

  27. S. Banerjee, S. Poria, G. Sutradhar, and P. Sahoo, “Understanding Fabrication and Properties of Magnesium Matrix Nanocomposites,” pp. 229–252, (2021)

  28. S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Corrosion behavior of AZ31-WC nano-composites. J. Magnes. Alloy. 7(4), 681–695 (2019)

    Article  CAS  Google Scholar 

  29. A. Gungor, A. Incesu, Effects of alloying elements and thermomechanical process on the mechanical and corrosion properties of biodegradable Mg alloys. J. Magnes. Alloy. 9(1), 241–253 (2021)

    Article  CAS  Google Scholar 

  30. M.R.S. del Campos et al., Effect of heat treatment on the corrosion behavior of Mg-10Gd alloy in 0.5% NaCl solution. Front. Mater. 7, 1–16 (2020)

    Article  Google Scholar 

  31. X. Ma, Q. Jiang, Y. Li, B. Hou, Effect of heat treatment on corrosion behaviors of Mg-5Y-1.5Nd alloys. Int. J. Electrochem. 2016, 1–9 (2016)

    Article  Google Scholar 

  32. E. Ghali, Corrosion and protection of magnesium alloys. Mater. Sci. Forum 350, 261–272 (2000)

    Article  Google Scholar 

  33. H.S. Ryu, S.-H. Hong, Effects of KF, NaOH, and KOH electrolytes on properties of microarc-oxidized coatings on AZ91D magnesium alloy. J. Electrochem. Soc. 156(9), C298 (2009)

    Article  CAS  Google Scholar 

  34. S.J. Huang, A.N. Ali, Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite. Mater. Sci. Eng. A 711, 670–682 (2018)

    Article  CAS  Google Scholar 

  35. S.L. Xiang, X.S. Hu, X.J. Wang, L.D. Wang, K. Wu, Precipitate characteristics and synergistic strengthening realization of graphene nanoplatelets reinforced bimodal structural magnesium matrix composites. Mater. Sci. Eng. A 724, 348–356 (2018)

    Article  CAS  Google Scholar 

  36. E.P. Da Silva et al., Solution and ageing heat treatments of ZK60 magnesium alloys with rare earth additions produced by semi-solid casting. Mater. Res. 17(6), 1507–1512 (2014)

    Article  Google Scholar 

  37. C. Smith, Z. Xu, and J. Sankar, “The Effects of T4 and T6 Heat Treatment on the Corrosion Behavior of MGZNCA Alloys,” no. 2011, pp. 1–15, (2016)

  38. Z. Shi, M. Liu, A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52(2), 579–588 (2010)

    Article  CAS  Google Scholar 

  39. M.E. Turan, Y. Sun, Y. Akgul, Mechanical, tribological and corrosion properties of fullerene reinforced magnesium matrix composites fabricated by semi powder metallurgy. J. Alloys Compd. 740, 1149–1158 (2018)

    Article  CAS  Google Scholar 

  40. N. Dinodi, A.N. Shetty, Electrochemical investigations on the corrosion behaviour of magnesium alloy ZE41 in a combined medium of chloride and sulphate. J. Magnes. Alloy. 1(3), 201–209 (2013)

    Article  CAS  Google Scholar 

  41. R. Ambat, N.N. Aung, W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corros. Sci. 42(8), 1433–1455 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Manufacturing Research Laboratory, Department of Mechanical Engineering and Nano Electrochemistry Laboratory (NEL), Department of Chemistry, National Institute of Technology, Puducherry, for encouragement and support for these experimental studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Sivaram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Packia Antony Amalan, A., Sivaram, N.M., Bavatharani, C. et al. A Study on the Effect of Ageing Heat Treatment on Hardness, Tensile and Corrosion Behaviour of Stir-Cast AZ91D–5SiC–1Gr Hybrid Magnesium Composite. Inter Metalcast 16, 973–986 (2022). https://doi.org/10.1007/s40962-021-00656-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00656-x

Keywords

Navigation