Skip to main content
Log in

Ultrasonic cavitation bubble- and gas bubble-assisted adsorption of paclitaxel from Taxus chinensis onto Sylopute

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study presents a technique for adsorption of paclitaxel on Sylopute using ultrasonic cavitation bubbles and gas bubbles. Compared with the conventional adsorption (control), the adsorbed amount and adsorption rate constant increased, respectively, by 1.27–1.44 times and 7.44–9.71 times in ultrasonic adsorption (with mixing at 80–250 W), 1.14–1.27 times and 4.63–9.31 times in ultrasonic adsorption (without mixing at 80–250 W), and 1.06–1.19 times and 1.18–1.34 times in gas bubble-adsorption (without mixing at 1.15–9.41 L/min). As a result of investigating the adsorption mechanism in which cavitation bubbles were introduced, it was shown that microjets and shock waves produced by bubble collapse, rather than the bubble itself, drastically improve mass transport in the pores of the adsorbent, thereby completely eliminating intraparticle diffusion resistance. In the case of gas bubbles, although the intraparticle diffusion coefficient increased by 1.34–1.75 times compared with the control, there was a limitation in promoting intraparticle diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. J. Kang and J. H. Kim, Biotechnol. Bioprocess Eng., 25, 86 (2020).

    Article  CAS  Google Scholar 

  2. A. M. L. Seca and D. C. G. A. Pinto, Int. J. Mol. Sci., 19, 263 (2018).

    Article  Google Scholar 

  3. H. J. Kang and J. H. Kim, Korean J. Chem. Eng., 36, 1965 (2019).

    Article  CAS  Google Scholar 

  4. S. H. Pyo, H. J. Choi and B. H. Han, J. Chromatogr. A, 1123, 15 (2006).

    Article  CAS  Google Scholar 

  5. H. W. Seo and J. H. Kim, Process Biochem., 87, 238 (2019).

    Article  CAS  Google Scholar 

  6. S. H. Pyo, H. B. Park, B. K. Song, B. H. Han and J. H. Kim, Process Biochem., 39, 1985 (2004).

    Article  CAS  Google Scholar 

  7. K. W. Yoo and J. H. Kim, Biotechnol. Bioprocess Eng., 23, 532 (2018).

    Article  CAS  Google Scholar 

  8. C. G. Lee and J. H. Kim, Korean Chem. Eng. Res., 54, 89 (2016).

    Article  CAS  Google Scholar 

  9. Y. S. Lim and J. H. Kim, J. Chem. Thermodyn., 115, 261 (2017).

    Article  CAS  Google Scholar 

  10. O. Hamdaoui, E. Naffrechoux, L. Tifouti and C. Pétrier, Ultrson. Sonochem., 10, 109 (2003).

    Article  CAS  Google Scholar 

  11. O. Hamdaoui and E. Naffrechoux, Ultrson. Sonochem., 16, 15 (2009).

    Article  CAS  Google Scholar 

  12. B. S. Schueller and R. T. Yang, Ind. Eng. Chem. Res., 40, 4912 (2001).

    Article  CAS  Google Scholar 

  13. X. Zhou, G. Jing, B. Lv, Z. Zhou and R. Zhu, Chemosphere, 160, 332 (2016).

    Article  CAS  Google Scholar 

  14. J. Y. Lee and J. H. Kim, Sep. Purif. Technol., 103, 8 (2013).

    Article  CAS  Google Scholar 

  15. H. S. Kim and J. H. Kim, Process Biochem., 56, 163 (2017).

    Article  CAS  Google Scholar 

  16. P. Maneechakr and S. Karnjanakom, J. Chem. Thermodyn., 106, 104 (2017).

    Article  CAS  Google Scholar 

  17. D. N. Cho and J. H. Kim, Korean Chem. Eng. Res., 58, 127 (2020).

    CAS  Google Scholar 

  18. S. H. Park and J. H. Kim, Korean Chem. Eng. Res., 58, 113 (2020).

    CAS  Google Scholar 

  19. O. Hamdaoui, M. Chiha and E. Naffrechoux, Ultrson. Sonochem., 15, 799 (2008).

    Article  CAS  Google Scholar 

  20. F. C. Wu, R. L. Tseng and R. S. Juang, J. Colloid Interface Sci., 283, 49 (2005).

    Article  CAS  Google Scholar 

  21. Y. S. Kim and J. H. Kim, J. Chem. Thermodyn., 130, 104 (2019).

    Article  CAS  Google Scholar 

  22. M. Ondarts, L. Reinert, S. Guittonneau, S. Baup, S. Delpeux, J. M. Lévêque and L. Duclaux, Chem. Eng. J., 343, 163 (2018).

    Article  CAS  Google Scholar 

  23. J. B. Ji, X. H. Lu and Z. C. Xu, Ultrson. Sonochem., 13, 463 (2006).

    Article  CAS  Google Scholar 

  24. H. J. Kang and J. H. Kim, Biotechnol. Bioprocess Eng., 24, 513 (2019).

    Article  CAS  Google Scholar 

  25. H. S. Shin and J. H. Kim, Process Biochem., 51, 917 (2016).

    Article  CAS  Google Scholar 

  26. L. Wolloch and J. Kost, J. Control. Release, 148, 204 (2010).

    Article  CAS  Google Scholar 

  27. K. Wohlgemuth, A. Kordylla, F. Ruether and G. Schembecker, Chem. Eng. Sci., 64, 4155 (2009).

    Article  CAS  Google Scholar 

  28. R. Krishna, J. Ellenberger, M. I. Urseanu and F. J. Keil, Naturwissenschaften, 87, 455 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Grant Number: 2021R1A2C1003186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, DY., Kim, JH. Ultrasonic cavitation bubble- and gas bubble-assisted adsorption of paclitaxel from Taxus chinensis onto Sylopute. Korean J. Chem. Eng. 38, 2286–2293 (2021). https://doi.org/10.1007/s11814-021-0852-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0852-y

Keywords

Navigation