Skip to main content
Log in

Prediction of gas holdup in various types of airlift reactors

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Useful correlations were derived for the prediction of available gas holdup data in air-water systems, using the operational and geometric parameters of airlift reactors only. To successfully consider the geometric difference between various types of airlift reactors, the characteristic distance (Dch) and the gas separation area (As) were defined as geometric parameters, respectively. The riser gas holdup (εr) in various types of airlift reactors was satisfactorily correlated with the operational and geometric parameters, such as the riser superficial gas velocity (UGr), a parameter containing the ratio of the top clearance to downcomer length (1+Ct/Ld), the characteristic distance to downcomer length ratio (Dch/Ld), the downcomer to riser cross-sectional area ratio (Ad/Ar), the ratio of the gas separation area to riser cross-sectional area (As/Ar), and the bottom to downcomer cross-sectional area ratio (Ab/Ad). The downcomer gas holdup in various types of airlift reactors was well correlated by a nonlinear equation involving εr, Dch/Ld, Ad/Ar, Ab/Ad, (1+Ct/Ld), and As/Ar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A:

cross-sectional area [m2]

a:

constant

b:

constant

C1 :

\({\rm{constant =}}{{3{\rm{n}} + 1} \over {{\rm{n}} + 1}}\)

C2 :

constant

Cb :

bottom clearance [m]

Cs :

dry weight solids per volume of suspension [%]

Ct :

top clearance [m]

D:

diameter [m]

Dch :

characteristic distance [m]

Fr’:

\({\rm{Froude number = U}}_{Gr}^2/({\rm{g}}\phi)\)

g:

gravitational acceleration [m s−2]

h:

piezometer reading [m]

H:

height [m]

Hd :

aerated liquid height [m]

HL :

unaerated liquid height [m]

k:

consistency index in a power-law model [Pa sn]

L:

length [m]

Lc :

length of connection pipe [m]

Lh :

distance between connection pipe axes [m]

M:

\({\rm{Morton number}} = {\rm{g}}\mu _L^4/({\rho _L}{\sigma ^3})\)

n:

flow index in a power-law model

PG/VL :

power input per volume of degassed liquid [kw m−3]

S:

separator to downcomer volume ratio

TVR :

volume ratio

td :

thickness of draft tube [m]

VL :

liquid volume [m3]

VLr :

mean liquid velocity in riser [m s−1]

UGr :

superficial gas velocity in riser [m s−1]

ULr :

superficial liquid velocity in riser [m s−1]

W:

width [m]

Z:

height of pressure tap [m]

ε :

gas holdup

ν g :

kinematic gas viscosity [Pa s]

ν N 2 :

kinematic nitrogen viscosity [Pa s]

μ :

viscosity [Pa s]

μ eff :

effective viscosity [Pa s]

ρ :

density [kg m−3]

σ :

surface tension [N m−1]

ϕ :

orifice size [m]

c:

column

co:

for Lc=0.50m

d:

downcomer or draft tube or vertical baffle

G:

gas

L:

liquid

r:

riser

s:

gas-liquid separator or gas separation

W:

water

References

  1. P. Weiland and U. Onken, Ger. Chem. Eng., 4, 174 (1981).

    Google Scholar 

  2. M. Y. Chisti and M. Moo-Young, Chem. Eng. Commun., 60, 195 (1987).

    Article  CAS  Google Scholar 

  3. J. C. Merchuk and H. Siegel, J. Chem. Tech. Biotechnol., 41, 105 (1988).

    Article  CAS  Google Scholar 

  4. X. Lu, J. Ding, Y. Wang and J. Shi, Chem. Eng. Sci., 55, 2257 (2000).

    Article  CAS  Google Scholar 

  5. C. H. Lin, B. S. Fang, C. S. Wu, H. Y. Fang, T. F. Kuo and C. Y. Hu, Biotechnol. Bioeng., 18, 1557 (1976).

    Article  Google Scholar 

  6. T. Vorpongsathorn, P. Wongsuchoyo and P. Pavasnat, Chem. Eng. J., 84, 551 (2001).

    Article  Google Scholar 

  7. K. H. Choi, J. W. Kim and W. K. Lee, Korean J. Chem. Eng., 3, 127 (1986).

    Article  CAS  Google Scholar 

  8. M. Zhao, K. Niranjan and J. F. Davidson, Chem. Eng. Sci., 49, 2359 (1994).

    Article  CAS  Google Scholar 

  9. S. Krichnavaruk and P. Pavasant, Chem. Eng. J., 89, 203 (2002).

    Article  CAS  Google Scholar 

  10. L. Luo, J. Yuan, P. Xie, J. Sun and W. Guo, Chem. Eng. Res. Des., 91, 2377 (2013).

    Article  CAS  Google Scholar 

  11. K. Mohanty, D. Das and M. N. Biswas, Chem. Eng. Sci., 61, 4617 (2006).

    Article  CAS  Google Scholar 

  12. Y. Chisti, M. Kasper and M. Moo-Young, Can. J. Chem. Eng., 68, 45 (1990).

    Article  CAS  Google Scholar 

  13. S. Goto and P. D. Gaspillo, Chem. Eng. Sci., 13/14, 3533 (1992).

    Article  Google Scholar 

  14. T. Zhang, J. Wang, T. Wang, J. Lin and Y. Jin, Chem. Eng. Proc., 44, 81 (2005).

    Article  CAS  Google Scholar 

  15. Y. Chisti and U. J. Jauregui-Haza, Biotechnol. Eng. J., 10, 143 (2002).

    CAS  Google Scholar 

  16. N. Lj. Lukić, I. M. Šijački, P. S. Kojić, S. S. Popović and M. N. Tokić, Biochem. Eng. J., 118 53 (2017).

  17. H. Nikahtari and G. A. Hill, Biochem. Eng. J., 27, 138 (2005).

    Article  CAS  Google Scholar 

  18. A. Margaritis and J. D. Sheppard, Biotechnol. Bioeng., 23, 2117 (1981).

    Article  Google Scholar 

  19. H. Kawasaki, H. Hirano and H. Tanaka, J. Chem. Eng. Japan, 27, 669 (1994).

    Article  CAS  Google Scholar 

  20. J. C. Merchuk and H. Siegel, AIChE J., 32, 1585 (1986).

    Article  Google Scholar 

  21. N. H. Thomas and D. A. Janes, Fluid dynamic considerations in airlift bioreactors, in biotechnology processes scale-up and mixing, C. S. Ho, J. Y. Oldshue (Eds.), AIChE, New York (1987).

  22. J. C. Merchuk, N. Ladwa, A. Cameron, M. Bulmer, I. Berzin and M. Pickett, AIChE J., 40 1105 (1994).

    Article  CAS  Google Scholar 

  23. M. Siegel and J. C. Merchuk, Can. J. Chem. Eng., 69, 465 (1991).

    Article  CAS  Google Scholar 

  24. M. Blažey, G. M. Cartland Glover, S. C. Generalis and J. Markoš, Chem. Eng. Pro., 43, 137 (2004).

    Article  CAS  Google Scholar 

  25. R. S. Douek, A. G. Livingston and G. F. Hewitt, AIChE J., 41, 2508 (1995).

    Article  CAS  Google Scholar 

  26. Y. Kawase and N. Hashimoto, J. Chem. Tech. Biotechnol., 65, 325 (1996).

    Article  CAS  Google Scholar 

  27. J. Lin, M. Han, T. Wang, T. Zhang, T. Wang and Y. Jin, Chem. Eng. J., 102, 51 (2004).

    Article  CAS  Google Scholar 

  28. Y. Rujiruttanakul and P. Pavasant, Chem. Eng. Res. Des., 89, 2254 (2011).

    Article  CAS  Google Scholar 

  29. S. H. Isaacs and M. Thoma, Chem. Eng. Sci., 47, 943 (1992).

    Article  CAS  Google Scholar 

  30. B. Kochbeck, M. Lindert and D. C. Hempel, Chem. Eng. Sci., 47, 3443 (1992).

    Article  CAS  Google Scholar 

  31. J. B. Snape, J. Zahradnik, M. Fialova and N. H. Thomas, Chem. Eng. Sci., 50, 3175 (1995).

    Article  CAS  Google Scholar 

  32. C. Vail, E. Camarasa, S. Poncin, G. Wild, N. Midoux and J. Bouillard, Chem. Eng. Sci., 55 2957 (2000).

    Article  Google Scholar 

  33. C. Vial, S. Poncin, G. Wild and N. Midoux, Chem. Eng. Sci., 57, 4745 (2002).

    Article  CAS  Google Scholar 

  34. M. E. Orazem and L. E. Erickson, Biothenol. Bioeng., 19, 69 (1979).

    Article  Google Scholar 

  35. W. Yu, T. Wang, M. Liu and Z. Wang, Chem. Eng. J., 142, 301 (2008).

    Article  CAS  Google Scholar 

  36. T. Zhang, C. Wei, C. Feng and J. Zhu, Bioresour. Technol., 104, 600 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. R. Salehpour, E. Jalilnejad, M. Nalband and K. Ghasemzadeh, Particuology, 51, 91 (2020).

    Article  CAS  Google Scholar 

  38. R. Bello, C. W. Robinson and M. Moo-Young, Chem. Eng. Sci., 40, 53 (1985).

    Article  Google Scholar 

  39. K. Koide, K. Kurematsu, S. Iwamoto, Y. Iwata and K. Horibe, J. Chem. Eng. Japan, 16, 413 (1983).

    Article  CAS  Google Scholar 

  40. K. H. Choi, Chem. Eng. Comm., 189, 25 (2002).

    Article  Google Scholar 

  41. E. R. Gouveia, C. O. Hokka and A. C. Badino-Jr., Braz. J. Chem. Eng., 20, 363 (2003).

    Article  CAS  Google Scholar 

  42. M. Chakravarty, H. D. Singh, J. N. Baruah and M. S. Iyengar, Ind. Eng. Chem., 16, 17 (1974).

    CAS  Google Scholar 

  43. M. Y. Chisti, K. Fujimoto and M. Moo-Young, Paper 117a presented at AIChE Annual Meeting, Miami Beach, November 2–7 (1986).

  44. R. A. Bello, C. W. Robinson and M. Moo-Young, Can. J. Chem. Eng., 62, 573 (1984).

    Article  CAS  Google Scholar 

  45. Y. Kawase and M. Moo-Young, J. Chem. Tech. Biotechnol., 36, 527 (1986).

    Article  CAS  Google Scholar 

  46. M. K. Popović and C. W. Robinson, AIChE J., 35, 393 (1989).

    Article  Google Scholar 

  47. K. H. Choi and W. K. Lee, J. Chem. Tech. Biotechnol., 56, 51 (1993).

    Article  CAS  Google Scholar 

  48. K. H. Choi, Korean J. Chem. Eng., 18, 240 (2001).

    Article  CAS  Google Scholar 

  49. K. H. Choi, Chem. Eng. Comm., 189, 25 (2002).

    Article  Google Scholar 

  50. F. Yazdian, S. A. Sojaosadati, M. Nosrati, M. Pesaran Hajiabbas and E. Vasheghani-Farahani, Chem. Eng. Sci., 64, 2455 (2009).

    Article  CAS  Google Scholar 

  51. J. H. Hills, Chem. Eng. J., 12, 89 (1976).

    Article  CAS  Google Scholar 

  52. J. C. Merchuk and Y. Stein, AIChE J., 27, 377 (1981).

    Article  CAS  Google Scholar 

  53. T. Miyahara, M. Hamaguchi, Y. Suketa and T. Takahashi, Can. J. Chem. Eng., 64, 718 (1986).

    Article  CAS  Google Scholar 

  54. J. Philip, J. M. Proctor, K. Niranjan and J. F. Davidson, Chem. Eng. Sci., 45, 651 (1990).

    Article  CAS  Google Scholar 

  55. Z. Kemblowski, J. Przywarski and A. Diab, Chem. Eng. Sci., 48, 4023 (1993).

    Article  CAS  Google Scholar 

  56. K. H. Choi, B. H. Han and W. K. Lee, HWAHAK KONGHAK, 28, 220 (1990).

    CAS  Google Scholar 

  57. P. S. Kojić, M. S. Tokić, I. M. Šijački, N. Lj. Lukić, D. Lj. Petrović, D. Z. Jovičević and S. S. Popović, Chem. Eng. Technol., 38, 701 (2015).

    Article  CAS  Google Scholar 

  58. L. Luo, F. Liu, Y. Xu and J. Yuan, Chem. Eng. J., 175, 494 (2011).

    Article  CAS  Google Scholar 

  59. I. M. Šijački, M. S. Tokić, P. S. Kojić, D. Lj. Petrović, M. N. Tekić, M. S. Djurić and S. S. Milovančev, Ind. Eng. Chem. Res., 50, 6 (2011).

    Article  CAS  Google Scholar 

  60. M. L. Fakhari, M. K. Moraveji and R. Davarnejad, Chinese J. Chem. Eng., 22, 267 (2014).

    Article  CAS  Google Scholar 

  61. M. H. Siegel, J. C. Merchuk and K. Schugerl, AIChE J., 32, 1585 (1986).

    Article  CAS  Google Scholar 

  62. P. S. Kojić, S. S. Popović, M. S. Tokić, I.M. Śijački, N. Lj. Lukić, D. Z. Jovičević and D. Lj. Petrović, Braz. J. Chem. Eng., 34, 493 (2017).

    Article  CAS  Google Scholar 

  63. K. H. Choi, Korean Chem. Eng. Res., 58, 665 (2020).

    CAS  Google Scholar 

  64. R. Bello, C. W. Robinson and M. Moo-Young, Biotechnol. Bioeng., 27, 369 (1985).

    Article  CAS  PubMed  Google Scholar 

  65. C. Bentifraouine, C. Xuereb and J. P. Riba, J. Chem. Tech. Biotechnol., 69, 345 (1997).

    Article  CAS  Google Scholar 

  66. A. Couvert, M. Roustan and P. Chatellier, Chem. Eng. Sci., 54, 5245 (1999).

    Article  CAS  Google Scholar 

  67. W. A. Al-Masry, Chem. Eng. Res. Des., 84, 483 (2006).

    Article  CAS  Google Scholar 

  68. A. G. Jones, Chem. Eng. Sci., 40, 449 (1985).

    Article  CAS  Google Scholar 

  69. S. Wachi, A. G. Jones and T.P. Elson, Chem. Eng. Sci., 46, 657 (1991).

    Article  CAS  Google Scholar 

  70. D. Lj. Petrović, D. Pošarac, A. Duduković and D. Skala, J. Serb. Chem. Soc., 56, 227 (1991).

    Google Scholar 

  71. W. J. Lu and S. J. Hwang, Chem. Eng. Sci., 50, 1301 (1995).

    Article  CAS  Google Scholar 

  72. M. Blažey, M. Kiša and J. Markoš, Chem. Eng. Pro., 43, 1519 (2004).

    Article  CAS  Google Scholar 

  73. M. Popović and C. W. Robinson, Chem. Eng. Sci., 42, 2811 (1987).

    Article  Google Scholar 

  74. W. A. Al-Masry and A. R. Dukkan, Chem. Eng. J., 65, 263 (1997).

    Article  CAS  Google Scholar 

  75. C. Bentifraouine, C. Xuereb and J. P. Riba, Chem. Eng. J., 66, 91 (1997).

    Article  CAS  Google Scholar 

  76. M. Y. Chisti, B. Halard and M. Moo-Young, Chem. Eng. Sci., 43, 451 (1988).

    Article  CAS  Google Scholar 

  77. Y. Chisti and M. Moo-Yong, Chem. Eng. Pro., 9, 38 (1993).

    Google Scholar 

  78. Y. Chisti, Airlift bioreactors, Elsevier Applied Science, London (1989).

    Google Scholar 

  79. K. H. Choi, Y. Chisti and M. Moo-Young, Chem. Eng. J., 62, 223 (1996).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun Ho Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K.H. Prediction of gas holdup in various types of airlift reactors. Korean J. Chem. Eng. 38, 1781–1790 (2021). https://doi.org/10.1007/s11814-021-0822-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0822-4

Keywords

Navigation