Skip to main content
Log in

Preparation of novel zeolite-containing hierarchical two-layered catalysts with large mesopores by gel skeletal reinforcement and their reactivities in catalytic cracking of n-dodecane

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In order to crack hydrocarbons with a large molecular weight, it is necessary to diffuse those substrates deeply into the inside of a catalyst. Catalysts having the hierarchical structure including not only micropores of zeolites in the inner side but also large mesopores in the outer side could crack large molecules of hydrocarbons quite effectively. To prepare such hierarchical catalysts, in this study, ZSM-5, Y and β zeolites were uniformly dispersed in silicas with large mesopores generated by the gel skeletal reinforcement (GSR) method. It was observed by XRD measurement that these catalysts maintained the framework of zeolite. Nitrogen adsorption and desorption measurement exhibited that the maximum pore volume and pore diameter of catalysts reached 5 cm3/g and 50 nm, respectively. These results indicated that silica having large mesopores would be present around the zeolite. When catalytic cracking of n-dodecane using these catalysts was performed, the ZSM-5-containing hierarchical catalysts exhibited 30% higher conversions than that of zeolite single. When catalysts containing β- and Y-zeolites were used, the ratios of multi-branched hydrocarbons/single-branched hydrocarbons (m/s) and olefin/paraffin (O/P) ratios in the gasoline fraction were about 1.5–2 times higher than those of ZSM-5-containing catalysts. The O/P ratios and conversions increased as the mesoporous diameter increased while the iso-/n- ratio of the gasoline fraction tended to depend on the microporous sizes of the zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.T.C. Vogt, B.M. Weckhuysen, Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015). https://doi.org/10.1039/c5cs00376h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M.S. Aghakhani, A.A. Khodadadi, Sh. Najafi, Y. Mortazavi, Enhanced triisopropylbenzene cracking and suppressed coking on tailored composite of Y-zeolite/amorphous silica–alumina catalyst. J. Ind. Eng. Chem. 20(5), 3037–3045 (2014). https://doi.org/10.1016/j.jiec.2013.11.040

    Article  CAS  Google Scholar 

  3. Q. Yu, H. Sun, H. Sun, L. Li, X. Zhu, S. Ren, Q. Guo, B. Shen, Highly mesoporous IM-5 zeolite prepared by alkaline treatment and its catalytic cracking performance. Microporous Mesoporous Mater. 273, 297–306 (2019). https://doi.org/10.1016/j.micromeso.2018.08.016

    Article  CAS  Google Scholar 

  4. Z. Qin, B. Shen, X. Gao, F. Lin, B. Wang, C. Xu, Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication–dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene. J. Catal. 278, 266–275 (2011). https://doi.org/10.1016/j.jcat.2010.12.013

    Article  CAS  Google Scholar 

  5. X. Zhang, D. Cheng, F. Chen, X. Zhan, n-Heptane catalytic cracking on hierarchical ZSM-5 zeolite: The effect of mesopores. Chem. Eng. Sci. 168, 352–359 (2017). https://doi.org/10.1016/j.ces.2017.05.012

    Article  CAS  Google Scholar 

  6. T. Odedairo, R.J. Balasamy, S. Al-Khattaf, Influence of mesoporous materials containing ZSM-5 on alkylation and cracking reactions. J. Mol. Catal. A: Chem. 345, 21–36 (2011). https://doi.org/10.1016/j.molcata.2011.05.015

    Article  CAS  Google Scholar 

  7. P. Sazama, B. Wichterlova, J. Dedecek, Z. Tvaruzkova, Z. Musilova, L. Palumbo, S. Sklenak, O. Gonsiorova, FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Microporous Mesoporous Mater. 143, 87–96 (2011). https://doi.org/10.1016/j.micromeso.2011.02.013

    Article  CAS  Google Scholar 

  8. T. Zhao, F. Li, H. Yu, S. Ding, Z. Li, X. Huang, X. Li, X. Wei, Z. Wang, H. Lin, Synthesis of mesoporous ZSM-5 zeolites and catalytic cracking of ethanol and oleic acid into light olefins. Appl. Catal. A: Gen. 575, 101–110 (2019). https://doi.org/10.1016/j.apcata.2019.02.011

    Article  CAS  Google Scholar 

  9. Y. Sang, H. Li, Effect of phosphorus and mesopore modification on the HZSM-5 zeolites for n-decane cracking. J. Solid State Chem. 271, 326–333 (2019). https://doi.org/10.1016/j.jssc.2019.01.016

    Article  CAS  Google Scholar 

  10. M. Pan, J. Zheng, Y. Liu, W. Ning, H. Tian, R. Li, Construction and practical application of a novel zeolite catalyst for hierarchically cracking of heavy oil. J. Catal. 369, 72–85 (2019). https://doi.org/10.1016/j.jcat.2018.10.032

    Article  CAS  Google Scholar 

  11. X. Hou, W. Zhu, Y. Tian, Y. Qiu, Z. Diao, F. Feng, X. Zhang, G. Liu, Superiority of ZrO2 surface enrichment on ZSM-5 zeolites in n-pentane catalytic cracking to produce light olefins. Microporous Mesoporous Mater. 276(1), 41–51 (2019). https://doi.org/10.1016/j.micromeso.2018.09.019

    Article  CAS  Google Scholar 

  12. T. Wu, G. Yuan, S. Chen, D. Zhao, J. Xu, T. Fan, Y. Cao, Butylene catalytic cracking to propylene over a hierarchical HZSM-5 zeolite: location of acid sites controlling the reaction pathway. Mol. Catal. 453, 161–169 (2018). https://doi.org/10.1016/j.mcat.2018.04.026

    Article  CAS  Google Scholar 

  13. Y. Ji, H. Yang, Q. Zhang, W. Yan, Phosphorus modification increases catalytic activity and stability of ZSM-5 zeolite on supercritical catalytic cracking of n-dodecane. J. Solid State Chem. 251, 7–13 (2017). https://doi.org/10.1016/j.jssc.2017.03.023

    Article  CAS  Google Scholar 

  14. B. Wang, C. Han, Q. Zhang, C. Li, C. Yang, H. Shan, Studies on the preliminary cracking of heavy oils: the effect of matrix acidity and a proposal of a new reaction route. Energy Fuels 29(9), 5701–5713 (2015). https://doi.org/10.1021/acs.energyfuels.5b01280

    Article  CAS  Google Scholar 

  15. B.T. Holland, V. Subramani, S.K. Gangwal, Utilizing colloidal silica and aluminum-doped colloidal silica as a binder in FCC catalysts: effects on porosity, acidity, and microactivity. Ind. Eng. Chem. Res. 46(13), 4486–4496 (2007). https://doi.org/10.1021/ie0702734

    Article  CAS  Google Scholar 

  16. S. Al-Khattaf, The influence of alumina on the performance of FCC catalysts during hydrotreated VGO catalytic cracking. Energy Fuels 17(1), 62–68 (2003). https://doi.org/10.1021/ef020066a

    Article  CAS  Google Scholar 

  17. P.R. Aravind, P. Mukundan, P.K. Pillai, K.G.K. Warrier, Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying. Microporous Mesoporous Mater. 96, 14–20 (2006). https://doi.org/10.1016/j.micromeso.2006.06.014

    Article  CAS  Google Scholar 

  18. Y. Jiang, X. Ding, J. Zhao, H. Bala, X. Zhao, Y. Tian, K. Yu, Y. Sheng, Y. Guo, Z. Wang, A facile route to synthesis of hollow SiO2/Al2O3 spheres with uniform mesopores in the shell wall. Mater. Lett. 59, 2893–2897 (2005). https://doi.org/10.1016/j.matlet.2005.04.037

    Article  CAS  Google Scholar 

  19. Y. Jiang, J. Zhao, H. Bala, H. Xu, N. Tao, X. Ding, Z. Wang, Synthesis of stable hollow spheres of Si/Al composite oxide with controlled pore size in the shell wall. Mater. Lett. 58, 2401–2405 (2004). https://doi.org/10.1016/j.matlet.2004.02.046

    Article  CAS  Google Scholar 

  20. R. Takahashi, S. Sato, T. Sodesawa, M. Yabuki, Silica-alumina catalyst with bimodal pore structure prepared by phase separation in sol-gel process. J. Catal. 200, 197–202 (2001). https://doi.org/10.1006/jcat.2001.3196

    Article  CAS  Google Scholar 

  21. H. Izutsu, F. Mizukami, T. Sashida, K. Maeda, Y. Kiyozumi, Y. Akiyama, Effect of malic acid on structure of silicon alkoxide derived silica. J. Non-Cryst. Solids 212, 40–48 (1997). https://doi.org/10.1016/S0022-3093(96)00620-5

    Article  CAS  Google Scholar 

  22. P. Padmaja, G.M. Anilkumar, P. Mukundan, G. Aruldhas, K.G.K. Warrier, Characterisation of stoichiometric sol–gel mullite by fourier transform infrared spectroscopy. Int. J. Inorg. Mater. 3, 693–698 (2001). https://doi.org/10.1016/S1466-6049(01)00189-1

    Article  CAS  Google Scholar 

  23. B. Dragoi, A. Gervasini, E. Dumitriu, A. Auroux, Calorimetric determination of the acidic character of amorphous and crystalline aluminosilicates. Thermochim. Acta 420, 127–134 (2004). https://doi.org/10.1016/j.tca.2003.10.031

    Article  CAS  Google Scholar 

  24. A. Carati, G. Ferraris, M. Guidotti, G. Moretti, R. Psaro, C. Rizzo, Preparation and characterisation of mesoporous silica–alumina and silica–titania with a narrow pore size distribution. Catal. Today 77, 315–323 (2003). https://doi.org/10.1016/S0920-5861(02)00376-0

    Article  CAS  Google Scholar 

  25. C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Cambridge, 1990), pp. 1–908. https://doi.org/10.1016/C2009-0-22386-5

    Book  Google Scholar 

  26. J.D. Wright, N.A.J.M. Sommerdijk, Sol-Gel Materials, Chemistry and Application (CRC Press, Boca Raton, 2000), pp. 1–129. https://doi.org/10.1201/9781315273808

    Book  Google Scholar 

  27. E.M. Lucas, M.S. Doescher, D.M. Ebenstein, K.J. Wahl, D.R. Rolison, Silica aerogels with enhanced durability, 30-nm mean pore-size, and improved immersibility in liquids. J. Non-Cryst. Solids 350, 244–252 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.07.074

    Article  CAS  Google Scholar 

  28. P.B. Sarawade, J.K. Kim, A. Hilonga, H.T. Kim, Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process. Solid State Sci. 12, 911–918 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.01.032

    Article  CAS  Google Scholar 

  29. M. Falco, E. Morgado, N. Amadeo, U. Sedran, Accessibility in alumina matrices of FCC catalysts. Appl. Catal. A: Gen. 315(23), 29–34 (2006). https://doi.org/10.1016/j.apcata.2006.08.028

    Article  CAS  Google Scholar 

  30. A. Ishihara, K. Tatebe, T. Hashimoto, H. Nasu, Preparation of silica, alumina, titania, and zirconia with different pore sizes using sol−gel method and their properties as matrices in catalytic cracking. Ind. Eng. Chem. Res. 57(43), 14394–14405 (2018). https://doi.org/10.1021/acs.iecr.8b03019

    Article  CAS  Google Scholar 

  31. A. Ishihara, H. Oono, T. Hashimoto, H. Nasu, Preparation of SiO2 and SiO2-Al2O3 catalysts by gel skeletal reinforcement using hexamethyldisiloxane (HMDS) and acetic anhydride and aluminum tri-sec-butoxide (ASB) systems and elucidation of their catalytic cracking properties as matrices. Microporous Mesoporous Mater. 233, 163–170 (2016). https://doi.org/10.1016/j.micromeso.2016.01.025

    Article  CAS  Google Scholar 

  32. S. Matsuura, T. Hashimoto, A. Ishihara, Preparation of β-zeolite mixed catalysts using alumina and titania matrices modified by silication of gel skeletal reinforcement and their reactivity for catalytic cracking of n-dodecane. Appl. Catal. A: Gen. 610, 117959 (2021). https://doi.org/10.1016/j.apcata.2020.117959

    Article  CAS  Google Scholar 

  33. A. Ishihara, M. Ninomiya, T. Hashimoto, H. Nasu, Catalytic cracking of C12–C32 hydrocarbons by hierarchical β- and Y-zeolite-containing mesoporous silica and silica-alumina using Curie point pyrolyzer. J. Anal. Appl. Pyrol. 150, 104876 (2020). https://doi.org/10.1016/j.jaap.2020.104876

    Article  CAS  Google Scholar 

  34. A. Ishihara, S. Matsuura, F. Hayashi, K. Suemitsu, T. Hashimoto, Estimation of catalytic cracking of vacuum gas oil by a Y zeolite-containing two-layered catalyst and a novel three-layered hierarchical catalyst using a curie point pyrolyzer method. Energy Fuels 34, 7448–7454 (2020). https://doi.org/10.1021/acs.energyfuels.0c00957

    Article  CAS  Google Scholar 

  35. A. Ishihara, T. Tsukamoto, T. Hashimoto, H. Nasu, Catalytic cracking of soybean oil by ZSM-5 zeolite-containing silica-aluminas with three layered micro-meso-meso-structure. Catal. Today 303, 123–129 (2018). https://doi.org/10.1016/j.cattod.2017.09.033

    Article  CAS  Google Scholar 

  36. H. Li, S. He, K. Ma, Q. Wu, Q. Jiao, K. Sun, Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: effect of SiO2/Al2O3 ratio in H-ZSM-5. Appl. Catal. A: Gen. 450, 152–159 (2013). https://doi.org/10.1016/j.apcata.2012.10.014

    Article  CAS  Google Scholar 

  37. A. Ishihara, K. Takai, T. Hashimoto, H. Nasu, Effects of a matrix on formation of aromatic compounds by dehydrocyclization of n-Pentane Using ZnZSM-5−Al2O3 composite catalysts. ACS Omega 5, 11160–11166 (2020). https://doi.org/10.1021/acsomega.0c01147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A. Ishihara, Y. Kodama, T. Hashimoto, Effect of matrix on aromatics production by cracking and dehydrocyclization of n-pentane using Ga ion-exchanged ZSM-5-alumina composite catalysts. Fuel Process. Technol. 213, 106679 (2021). https://doi.org/10.1016/j.fuproc.2020.106679

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A part of this work was supported by the Alumni Association of Graduate School of Engineering in Mie University. The authors also thank Mr. Koudai Mizuno for his helpful work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Ishihara.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuura, S., Hashimoto, T. & Ishihara, A. Preparation of novel zeolite-containing hierarchical two-layered catalysts with large mesopores by gel skeletal reinforcement and their reactivities in catalytic cracking of n-dodecane. J Porous Mater 28, 1935–1944 (2021). https://doi.org/10.1007/s10934-021-01133-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01133-w

Keywords

Navigation