Skip to main content
Log in

Thermodynamic Reassessment of the Au-In Binary System Supported with First-Principles Calculations

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The Au-In binary system has been reviewed and the thermodynamic description was re-assessed using the CALPHAD method with aid of first-principles calculations based on density functional theory (DFT). The predicted enthalpy of formation of all stable and hypothesized intermetallics in the Au-In binary system were used to support the optimization. Compared with the previous assessment of this system, a part of thermodynamic models of the intermediate phases were renewed by considering their atomic positions in the lattice, e.g. the model of Au\(_3\)In\(_2\) (\(\Psi\)) phase was revised as (Au)\(_{0.2}\)(Au, In)\(_{0.6}\)(In)\(_{0.2}\), Au\(_9\)In\(_4\) (\(\gamma\)) phase was considered as an intermetallic, modeling as (Au)\(_{0.6923}\)(In)\(_{0.3077}\), and Au\(_{10}\)In\(_3\) (\(\beta '\)) phase was corrected numerically as (Au)\(_{0.769}\)(In)\(_{0.231}\). The calculated phase diagram agrees well the experimental phase equilibrium data in the literature and the resulting thermodynamic properties are more reasonable. By the coupling of the phase diagram data and experimental together with predicted thermodynamic data, a set of thermodynamic parameters describing all phases in the Au-In system was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Sheen, Y. Ho, C. Wang, K. Hsieh, and W. Cheng, The Joint Strength and Microstructure of Flux-less Au/Sn Solders in In-P-Based Laser Diode Packages, J. Electo. Mater., 2005, 34, 1318–1323.

    Article  ADS  Google Scholar 

  2. F. Shieu, C. Chen, J. Sheen, and Z. Chang, Intermetallic Phase Formation and Shear Strength of a Au-In Microjoint, Thin Solid Films, 1999, 346, 125–129.

    Article  ADS  Google Scholar 

  3. H. Okamoto and T. B. Massalski, Phase Diagrams of Binary Gold Alloys, ASM International, 1987, 1987, 358.

    Google Scholar 

  4. I. Ansara and J.-P. Nabot, A Thermodynamic Re-assessment of the Au-In System in the Au-Rich Region, Calphad, 1992, 16, 13–18.

    Article  Google Scholar 

  5. H. Liu, Y. Cui, K. Ishida, and Z. Jin, Thermodynamic Reassessment of the Au-In Binary System, Calphad, 2003, 27, 27–37.

    Article  Google Scholar 

  6. O. Kubaschewski and F. Weibke, On the Alloys of Indium with Gold, Z. Elektroch. Ang. Phys. Chem., 1938 44 870–877.

    Google Scholar 

  7. S. Hiscocks and W. Hume-Rothery, The Equilibrium Diagram of the System Gold-Indium, Proc. R. Soc. Lond. A , 1964, 282, 318–330.

    Article  ADS  Google Scholar 

  8. V. Nikitina, A. Babitsyna, and Y. K. Lobanova, Phase Diagram of the Au-In System, Izv. Akad. Bauk SSSR, Neorg. Mater., 1971, 7, 421–427.

  9. K. Itagaki, Measurements of Heat of Fusion and Specific Heat of Au Binary Compounds and Derivation of Excess Free Energy of Mixing in Liquid Au Binary Alloys, J. Jpn. Inst. Met., 1976, 40, 1038–1046.

    Article  Google Scholar 

  10. E. Owen, R. Eao, and G. Raynor, The Solubility of Certain Metals in Gold, J. Inst. Met., 1945, 71, 213–254.

  11. V.P.M.E. Perfection of the Structure of the Au-In Alpha Phase-Lattice Parameters, Solubility Limit, Expansion Coeffients, Densities and Voids, Z. Metallkd., 1972, 63, 33–37.

    Google Scholar 

  12. K. Schubert, M. Balk, S. Bahn, H. Breimer, P. Esslinger, and E. Stolz, Some Structure Results on Metallic Phases. iv, Naturwissenschaften, 1959, 46, 647–648.

  13. M. Jandali, T. Rajasekharan, and K. Schubert, Crystal Structure of Au10In3, Z. Metallkd., 1982, 73, 463–467.

    Google Scholar 

  14. K. Schubert, H. Breimer, and R. Gohle, The Structures of the Systems Gold-Indium, Gold-Tin, Gold-Indium-Tin and Gold-Tin-Antimony, Z. Metallkd., 1959, 50 , 146–153.

    Google Scholar 

  15. K. Kameda, T. Azakami, and M. Kameda, Activities of In and Sb in Liquid Au-Base Binary Alloy Systems, J. Jpn. Inst. Met., 1974, 38, 434–439.

    Article  Google Scholar 

  16. R. Castanet, W. Ditz, K. Komarek, and E. Reiffenstein, Thermodynamic Investigations of Liquid Au-In Alloys, Z. Metallkd., 1981, 72, 176–180.

    Google Scholar 

  17. K. Itagaki and A. Yazawa, Measurements of Heats of Mixing in Liquid Gold Binary Alloys, J. Jpn. Inst. Met., 1971, 35, 389–394.

    Article  Google Scholar 

  18. S. Hassam, D. Boa, and J. Rogez, Calorimetric Investigations of Au-In, In-Sb and Au-In-Sb Systems at 973 k, J. Alloy. Compd., 2012, 520, 65–71.

    Article  Google Scholar 

  19. M. Puselj and K. Schubert, Kristallstrukturen von Au9In4 (h) und Au7In3, J. Less-Common Met., 1975, 41, 33–44.

    Article  Google Scholar 

  20. K. Schubert, H. Breiner, W. Burkhardt, E. Gtinzel, R. Haufler, H. Lukas, H. Vetter, J. Wegst, and M. Wilkens, Some Structural Results of Metallic Phases, ii, Naturwissenschaften, 1957, 44 229–230.

    Article  ADS  Google Scholar 

  21. K. Schubert, H. Breimer, R. Gohle, H. Lukas, H. Meissner, and E. Stolz, Some Structure Results on Metallic Phases. iii, Naturwissenschaften, 1958, 45, 360–361.

  22. K. Schubert, U. Rössler, M. Kluga, K. Anderko, and L. Harle, Crystallographic Results on Phases with Penetration Bands., Naturwissenschaften, 1953, 40, 437.

  23. E. Zintl, A. Harder, and W. Haucke, Alloys with the Fluorite Structure, Z. Phys. Chem., 1937, 35, 354–362.

    Article  Google Scholar 

  24. M. Wolcyrz, R. Kubiak, and S. Maciejewski, X-ray Investigation of Thermal Expansion and Atomic Thermal Vibrations of Tin, Indium, and Their Alloys, Phys. Status Solidi (b), 1981, 107, 245–253.

    Article  ADS  Google Scholar 

  25. K. Wasai and K. Mukai, Consideration on the Enthalpy of Mixing of Liquid Au-Sn and Au-In Alloys, Fluid Phase Equilibria, 1996,125, 185–194.

    Article  Google Scholar 

  26. G. Kresse and J. Furthmüller, Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, 1996, 54, 11169.

    Article  ADS  Google Scholar 

  27. P. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953.

    Article  ADS  Google Scholar 

  28. G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, 59, 1758.

    Article  ADS  Google Scholar 

  29. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, 3865.

    Article  ADS  Google Scholar 

  30. P. E. Blöchl, O. Jepsen, and O. K. Andersen, Improved Tetrahedron Method for Brillouin-Zone Integrations, Phys. Rev. B, 1994, 49, 16223.

    Article  ADS  Google Scholar 

  31. A. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15 , 317–425.

    Article  Google Scholar 

  32. O. Redlich and A. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Indus Eng. Chem., 1948, 40, 345–348.

    Article  Google Scholar 

  33. L.-S. Hsu, Y.-K. Wang, Y.-L. Tai, and J.-F. Lee, Experimental and Theoretical Study of the Electronic Structure of AuAl2, AuGa2, and AuIn2, Phys. Rev. B, 2005,72, 115115.

    Article  ADS  Google Scholar 

  34. J.-P. Jan, W. Pearson, Y. Saito, M. Springford, and I. Templeton, De Haas-van Alphen Effect and Fermi Surface of the Intermetallic Compounds AuAl\(_{2}\), AuGa\(_{2}\) and AuIn\(_{2}\), Philos. Mag., 1965, 12, 1271–1291.

    Article  Google Scholar 

  35. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26, 273–312.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Professor Jin Zhanpeng, Academician of the Chinese Academy of Sciences from Central South Unversity, for his guidance. We acknowledge computational time on the Lichtenberg supercomputer at TU Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Hu, K., Fan, L. et al. Thermodynamic Reassessment of the Au-In Binary System Supported with First-Principles Calculations. J. Phase Equilib. Diffus. 42, 479–488 (2021). https://doi.org/10.1007/s11669-021-00910-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00910-z

Keywords

Navigation