Skip to main content

Advertisement

Log in

Additive Manufacturing of High-Entropy Alloys: Microstructural Metastability and Mechanical Behavior

  • Supplemental Literature Review
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) have received considerable interest over the past decade due to their intriguing structural, chemical, and physical properties. Additive manufacturing (AM), also termed three-dimensional (3D) printing, generates parts with complex geometries and internal features layer-upon-layer from a computer-aided design (CAD) 3D file. In recent years, explosive research on AM of HEAs has been inspired. This paper performs a comprehensive and critical review on the recent progress in additively manufactured (AM-ed) HEAs, with a special focus placed on the similarities and differences in the microstructure and mechanical behavior between the AM-ed HEAs and the as-cast or thermo-mechanically processed (TMP-ed) counterparts. To gain a better understanding of the formation of the AM microstructure, the working principles, rapid solidification effects, and subsequent thermal cycling effects of various metal AM techniques, e.g., directed energy deposition (DED), selective laser melting (SLM), and electron beam melting (EBM), are also introduced. In the end, several future research directions are suggested towards the design of advanced HEAs with the superior strength-ductility synergy via 3D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218.

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.

    Article  Google Scholar 

  3. Y.-J. Liang, L. Wang, Y. Wen, B. Cheng, Q. Wu, T. Cao, Q. Xiao, Y. Xue, G. Sha, Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang, and H. Cai, High-Content Ductile Coherent Nanoprecipitates Achieve Ultrastrong High-Entropy Alloys, Nat. Commun., 2018, 9, p 4063.

    Article  ADS  Google Scholar 

  4. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158.

    Article  ADS  Google Scholar 

  5. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with Face-Centered Cubic Crystal Structures, Acta Mater., 2014, 81, p 428–441.

    Article  Google Scholar 

  6. N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle, Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy Under Ion Irradiation, Acta Mater., 2016, 113, p 230–244.

    Article  ADS  Google Scholar 

  7. S. Maiti, and W. Steurer, Structural-Disorder and Its Effect on Mechanical Properties in Single-Phase TaNbHfZr High-Entropy Alloy, Acta Mater., 2016, 106, p 87–97.

    Article  ADS  Google Scholar 

  8. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19, p 698–706.

    Article  Google Scholar 

  9. M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk, High-Entropy Alloys in Hexagonal Close-Packed Structure, Metall. Mater. Trans. A, 2016, 47, p 3322–3332.

    Article  Google Scholar 

  10. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-atomic Alloy Strategy and Binary Phase Diagrams, JOM, 2014, 66, p 1984–1992.

    Article  Google Scholar 

  11. X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, and Y.H. Zhao, Microstructural Origins of High Strength and High Ductility in an AlCoCrFeNi2.1 Eutectic High-Entropy Alloy, Acta Mater., 2017, 141, p 59–66.

    Article  ADS  Google Scholar 

  12. P.J. Shi, W.L. Ren, T.X. Zheng, Z.M. Ren, X.L. Hou, J.C. Peng, P.F. Hu, Y.F. Gao, Y.B. Zhong, and P.K. Liaw, Enhanced Strength-Ductility Synergy in Ultrafine-Grained Eutectic High-Entropy Alloys by Inheriting Microstructural Lamellae, Nat. Commun., 2019, 10, p 1–8.

    Article  Google Scholar 

  13. W. Zhang, L. Liu, S. Peng, J. Ren, F. Wu, J. Shang, M. Chen, Y. Zhang, Z. Zhao, J. Qi, B. Wang, and W. Chen, The Tensile Property and Notch Sensitivity of AlCoCrFeNi2.1 High Entropy Alloy with a Novel “Steel-Frame” Eutectic Microstructure, J. Alloys Compd., 2021, 863, p 158747.

    Article  Google Scholar 

  14. K. Yao, L. Liu, J. Ren, Y. Guo, Y. Liu, Y. Cao, R. Feng, F. Wu, J. Qi, J. Luo, P.K. Liaw, and W. Chen, High-Entropy Intermetallic Compound with Ultra-High Strength and Thermal Stability, Scr. Mater., 2021, 194, p 113674.

    Article  Google Scholar 

  15. P. Lu, J.E. Saal, G.B. Olson, T. Li, O.J. Swanson, G.S. Frankel, A.Y. Gerard, K.F. Quiambao, and J.R. Scully, Computational Materials Design of a Corrosion Resistant High Entropy Alloy for Harsh Environments, Scr. Mater., 2018, 153, p 19–22.

    Article  Google Scholar 

  16. Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, and B. Yang, Homogenization of AlxCoCrFeNi High-Entropy Alloys with Improved Corrosion Resistance, Corros. Sci., 2018, 133, p 120–131.

    Article  Google Scholar 

  17. Z. Tang, T. Yuan, C.-W. Tsai, J.-W. Yeh, C.D. Lundin, and P.K. Liaw, Fatigue Behavior of a Wrought Al0.5CoCrCuFeNi Two-Phase High-Entropy Alloy, Acta Mater., 2015, 99, p 247–258.

    Article  ADS  Google Scholar 

  18. Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George, Recovery, Recrystallization, Grain Growth and Phase Stability of a Family of FCC-Structured Multi-component Equiatomic Solid Solution Alloys, Intermetallics, 2014, 46, p 131–140.

    Article  Google Scholar 

  19. W. Ji, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, F. Zhang, and Z.Y. Fu, Alloying Behavior and Novel Properties of CoCrFeNiMn High-Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering, Intermetallics, 2015, 56, p 24–27.

    Article  Google Scholar 

  20. Y. Liu, J.S. Wang, Q.H. Fang, B. Liu, Y. Wu, and S.Q. Chen, Preparation of Superfine-Grained High Entropy Alloy by Spark Plasma Sintering Gas Atomized Powder, Intermetallics, 2016, 68, p 16–22.

    Article  Google Scholar 

  21. Y. Zou, H. Ma, and R. Spolenak, Ultrastrong Ductile and Stable High-Entropy Alloys at Small Scales, Nat. Commun., 2015, 6, p 7748.

    Article  ADS  Google Scholar 

  22. Y.M. Wang, T. Voisin, J.T. McKeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2018, 17, p 63.

    Article  ADS  Google Scholar 

  23. W. Chen, T. Voisin, Y. Zhang, J.-B. Florien, C. Spadaccini, D. McDowell, T. Zhu, and Y. Wang, Microscale Residual Stresses in Additively Manufactured Stainless Steel, Nat. Commun., 2019, 10, p 1–12.

    Google Scholar 

  24. J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty, Simultaneous Enhancements of Strength and Toughness in an Al-12Si Alloy Synthesized Using Selective Laser Melting, Acta Mater., 2016, 115, p 285–294.

    Article  ADS  Google Scholar 

  25. N. Raghavan, S. Simunovic, R. Dehoff, A. Plotkowski, J. Turner, M. Kirka, and S. Babu, Localized Melt-Scan Strategy for Site Specific Control of Grain Size and Primary Dendrite Arm Spacing in Electron Beam Additive Manufacturing, Acta Mater., 2017, 140, p 375–387.

    Article  ADS  Google Scholar 

  26. S. Chen, Y. Tong, and P.K. Liaw, Additive Manufacturing of High-Entropy Alloys: A Review, Entropy, 2018, 20, p 937.

    Article  ADS  Google Scholar 

  27. M. Yan and P. Yu, An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V: Comparison Among Selective Laser Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder, 2015.

  28. L. Li, Repair of Directionally Solidified Superalloy GTD-111 by Laser-Engineered Net Shaping, J. Mater. Sci., 2006, 41, p 7886–7893.

    Article  ADS  Google Scholar 

  29. R. Banerjee, P.C. Collins, D. Bhattacharyya, S. Banerjee, and H.L. Fraser, Microstructural Evolution in Laser Deposited Compositionally Graded Alpha/Beta Titanium-Vanadium Alloys, Acta Mater., 2003, 51, p 3277–3292.

    Article  ADS  Google Scholar 

  30. L. Jiao, Z. Chua, S. Moon, J. Song, G. Bi, and H. Zheng, Femtosecond Laser Produced Hydrophobic Hierarchical Structures on Additive Manufacturing Parts, Nanomaterials, 2018, 8, p 601.

    Article  Google Scholar 

  31. A.T. Sidambe, Biocompatibility of Advanced Manufactured Titanium Implants—A Review, Materials (Basel), 2014, 7, p 8168–8188.

    Article  ADS  Google Scholar 

  32. S. Peng, S. Mooraj, R. Feng, L. Liu, J. Ren, Y. Liu, F. Kong, Z. Xiao, C. Zhu, P.K. Liaw, and W. Chen, Additive Manufacturing of Three-Dimensional (3D)-Architected CoCrFeNiMn High- Entropy Alloy with Great Energy Absorption, Scr. Mater., 2021, 190, p 46–51.

    Article  Google Scholar 

  33. S. Mooraj, S.S. Welborn, S. Jiang, S. Peng, J. Fu, S. Baker, E.B. Duoss, C. Zhu, E. Detsi, and W. Chen, Three-Dimensional Hierarchical Nanoporous Copper Via Direct Ink Writing and Dealloying, Scr. Mater., 2020, 177, p 146–150.

    Article  Google Scholar 

  34. M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, M. Essien, J. Brooks, C.V. Robino, J.E. Smugeresky, W.H. Hofmeister, M.J. Wert, and D.V. Nelson, Understanding Thermal Behavior in the LENS Process, Mater. Des., 1999, 20, p 107–113.

    Article  Google Scholar 

  35. Y. Xiong, W.H. Hofmeister, Z. Cheng, J.E. Smugeresky, E.J. Lavernia, and J.M. Schoenung, In Situ Thermal Imaging and Three-Dimensional Finite Element Modeling of Tungsten Carbide-Cobalt During Laser Deposition, Acta Mater., 2009, 57, p 5419–5429.

    Article  ADS  Google Scholar 

  36. Y.H. Xiong, W.H. Hofmeister, J.E. Smugeresky, J.P. Delplanque, and J.M. Schoenung, Investigation of Atypical Molten Pool Dynamics in Tungsten Carbide-Cobalt During Laser Deposition Using In-Situ Thermal Imaging, Appl. Phys. Lett., 2012, 100, p 034101.

    Article  ADS  Google Scholar 

  37. L. Wang, S.D. Felicelli, and J.E. Craig, Experimental and Numerical Study of the LENS Rapid Fabrication Process, J. Manuf. Sci. Eng., 2009, 131, p 41019.

    Article  Google Scholar 

  38. S. Guan, K. Solberg, D. Wan, F. Berto, T. Welo, T.M. Yue, and K.C. Chan, Formation of Fully Equiaxed Grain Microstructure in Additively Manufactured AlCoCrFeNiTi0.5 High Entropy Alloy, Mater. Des., 2019, 184, p 108202.

    Article  Google Scholar 

  39. S. Guan, D. Wan, K. Solberg, F. Berto, T. Welo, T.M. Yue, and K.C. Chan, Additive Manufacturing of Fine-Grained and Dislocation-Populated CrMnFeCoNi High Entropy Alloy by Laser Engineered Net Shaping, Mater. Sci. Eng. A, 2019, 761, p 138056.

    Article  Google Scholar 

  40. S. Guan, D. Wan, K. Solberg, F. Berto, T. Welo, T.M. Yue, and K.C. Chan, Additively Manufactured CrMnFeCoNi/AlCoCrFeNiTi0.5 Laminated High-Entropy Alloy with Enhanced Strength-Plasticity Synergy, Scr. Mater., 2020, 183, p 133–138.

    Article  Google Scholar 

  41. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia, Thermal Behavior and Microstructural Evolution During Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations, Metall. Mater. Trans. A, 2008, 39A, p 2228–2236.

    Article  ADS  Google Scholar 

  42. L. Wang, and S. Felicelli, Analysis of Thermal Phenomena in LENSTM Deposition, Mater. Sci. Eng. A, 2006, 435, p 625–631.

    Article  Google Scholar 

  43. L. Wang, S. Felicelli, Y. Gooroochurn, P.T. Wang, and M.F. Horstemeyer, Optimization of the LENS Process for Steady Molten Pool Size, Mater. Sci. Eng. A, 2008, 474, p 148–156.

    Article  Google Scholar 

  44. Y. Lu, S. Su, S. Zhang, Y. Huang, Z. Qin, X. Lu, and W. Chen, Controllable Additive Manufacturing of Gradient Bulk Metallic Glass Composite with High Strength and Tensile Ductility, Acta Mater., 2021, 206, p 116632.

    Article  Google Scholar 

  45. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Additive Manufacturing of Metallic Components—Process, Structure and Properties, Prog. Mater Sci., 2018, 92, p 112–224.

    Article  Google Scholar 

  46. T. Eagar, and N. Tsai, Temperature Fields Produced by Traveling Distributed Heat Sources, Weld. J., 1983, 62, p 346–355.

    Google Scholar 

  47. L. Johnson, M. Mahmoudi, B. Zhang, R. Seede, X. Huang, J.T. Maier, H.J. Maier, I. Karaman, A. Elwany, and R. Arróyave, Assessing Printability Maps in Additive Manufacturing of Metal Alloys, Acta Mater., 2019, 176, p 199–210.

    Article  ADS  Google Scholar 

  48. X.Q. Wang, L.N. Carter, B. Pang, M.M. Attallah, and M.H. Loretto, Microstructure and Yield Strength of SLM-Fabricated CM247LC Ni-Superalloy, Acta Mater., 2017, 128, p 87–95.

    Article  ADS  Google Scholar 

  49. R. Ye, J.E. Smugeresky, B. Zheng, Y. Zhou, and E.J. Lavernia, Numerical Modeling of the Thermal Behavior During the LENS Process, Mater. Sci. Eng. A, 2006, 428, p 47–53.

    Article  Google Scholar 

  50. W. Xiao, S. Li, C. Wang, Y. Shi, J. Mazumder, H. Xing, and L. Song, Multi-scale Simulation of Dendrite Growth for Direct Energy Deposition of Nickel-Based Superalloys, Mater. Des., 2019, 164, p 107553.

    Article  Google Scholar 

  51. M. Moorehead, K. Bertsch, M. Niezgoda, C. Parkin, M. Elbakhshwan, K. Sridharan, C. Zhang, D. Thoma, and A. Couet, High-Throughput Synthesis of Mo-Nb-Ta-W High-Entropy Alloys Via Additive Manufacturing, Mater. Des., 2020, 187, p 108358.

    Article  Google Scholar 

  52. P.P. Yuan, D.D. Gu, and D.H. Dai, Particulate Migration Behavior and Its Mechanism During Selective Laser Melting of TiC Reinforced Al Matrix Nanocomposites, Mater. Des., 2015, 82, p 46–55.

    Article  Google Scholar 

  53. J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.-H. Yu, and H.S. Kim, Superior Tensile Properties of 1%C-CoCrFeMnNi High-Entropy Alloy Additively Manufactured by Selective Laser Melting, Mater. Res. Lett., 2019, 8, p 1–7.

    Article  Google Scholar 

  54. P.A. Hooper, Melt Pool Temperature and Cooling Rates in Laser Powder Bed Fusion, Addit. Manuf., 2018, 22, p 548–559.

    Google Scholar 

  55. M. Gäumann, S. Henry, F. Cleton, J.D. Wagniere, and W. Kurz, Epitaxial Laser Metal Forming: Analysis of Microstructure Formation, Mater. Sci. Eng. A, 1999, 271, p 232–241.

    Article  Google Scholar 

  56. G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability, Mater. Sci. Eng. A, 2009, 509, p 98–104.

    Article  Google Scholar 

  57. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor, Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review, Mater. Des., 2018, 139, p 565–586.

    Article  Google Scholar 

  58. P. Hou, Y. Li, D. Chae, Y. Ren, K. An, and H. Choo, Lean Duplex TRIP Steel: Role of Ferrite in the Texture Development, Plastic Anisotropy, Martensitic Transformation Kinetics, and Stress Partitioning, Materialia, 2021, 15, p 100952.

    Article  Google Scholar 

  59. X. Lin, T.M. Yue, H.O. Yang, and W.D. Huang, Microstructure and Phase Evolution in Laser Rapid Forming of a Functionally Graded Ti-Rene88DT Alloy, Acta Mater., 2006, 54, p 1901–1915.

    Article  ADS  Google Scholar 

  60. X. Lin, T.M. Yue, H.O. Yang, and W.D. Huang, Laser Rapid Forming of SS316L/Rene88DT Graded Material, Mater. Sci. Eng. A, 2005, 391, p 325–336.

    Article  Google Scholar 

  61. X. Lin, and T.M. Yue, Phase Formation and Microstructure Evolution in Laser Rapid Forming of Graded SS316L/Rene88DT Alloy, Mater. Sci. Eng. A, 2005, 402, p 294–306.

    Article  Google Scholar 

  62. Y.M. Li, H. Yang, X. Lin, W.D. Huang, J.G. Li, and Y.H. Zhou, The Influences of Processing Parameters on Forming Characterizations During Laser Rapid Forming, Mater. Sci. Eng. A, 2003, 360, p 18–25.

    Article  Google Scholar 

  63. W. Kurz, C. Bezencon, and M. Gäumann, Columnar to Equiaxed Transition in Solidification Processing, Sci. Technol. Adv. Mat., 2001, 2, p 185–191.

    Article  Google Scholar 

  64. M. Gäumann, C. Bezencon, P. Canalis, and W. Kurz, Single-Crystal Laser Deposition of Superalloys: Processing-Microstructure Maps, Acta Mater., 2001, 49, p 1051–1062.

    Article  ADS  Google Scholar 

  65. D. Dube, M. Fiset, A. Couture, and I. Nakatsugawa, Characterization and Performance of Laser Melted AZ91D and AM60B, Mater. Sci. Eng. A, 2001, 299, p 38–45.

    Article  Google Scholar 

  66. F. Cleton, P.H. Jouneau, S. Henry, M. Gaumann, and P.A. Buffat, Crystallographic Orientation Assessment by Electron Backscattered Diffraction, Scanning, 1999, 21, p 232–237.

    Article  Google Scholar 

  67. R. Banerjee, P.C. Collins, A. Genc, and H.L. Fraser, Direct Laser Deposition of In Situ Ti-6Al-4V-TiB Composites, Mater. Sci. Eng. A, 2003, 358, p 343–349.

    Article  Google Scholar 

  68. R.S. Amano, and P.K. Rohatgi, Laser Engineered Net Shaping Process for SAE 4140 Low Alloy Steel, Mater. Sci. Eng. A, 2011, 528, p 6680–6693.

    Article  Google Scholar 

  69. R. Banerjee, C.A. Brice, S. Banerjee, and H.L. Fraser, Microstructural Evolution in Laser Deposited Ni-25at.% Mo Alloy, Mater. Sci. Eng. A, 2003, 347, p 1–4.

    Article  Google Scholar 

  70. Y.Y. Zhu, D. Liu, X.J. Tian, H.B. Tang, and H.M. Wang, Characterization of Microstructure and Mechanical Properties of Laser Melting Deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Titanium Alloy, Mater. Des., 2014, 56, p 445–453.

    Article  Google Scholar 

  71. L.L. Parimi, G.A. Ravi, D. Clark, and M.M. Attallah, Microstructural and Texture Development in Direct Laser Fabricated IN718, Mater. Charact., 2014, 89, p 102–111.

    Article  Google Scholar 

  72. I. Kunce, M. Polanski, K. Karczewski, T. Plocinski, and K.J. Kurzydlowski, Microstructural Characterisation of High-Entropy Alloy AlCoCrFeNi Fabricated by Laser Engineered Net Shaping, J. Alloys Compd., 2015, 648, p 751–758.

    Article  Google Scholar 

  73. M. Gäumann, R. Trivedi, and W. Kurz, Nucleation Ahead of the Advancing Interface in Directional Solidification, Mater. Sci. Eng. A, 1997, 226, p 763–769.

    Article  Google Scholar 

  74. J.D. Hunt, Steady-State Columnar and Equiaxed Growth of Dendrites and Eutectic, Mater. Sci. Eng., 1984, 65, p 75–83.

    Article  ADS  Google Scholar 

  75. Y.B. Zuo, B. Jiang, Y. Zhang, and Z. Fan, Iop, Grain Refinement of DC Cast Magnesium Alloys with Intensive Melt Shearing, in 3rd International Conference on Advances in Solidification Processes (2012).

  76. Y.H. Zhang, X.R. Cheng, H.G. Zhong, Z.S. Xu, L.J. Li, Y.Y. Gong, X.C. Miao, C.J. Song, and Q.J. Zhai, Comparative Study on the Grain Refinement of Al-Si Alloy Solidified Under the Impact of Pulsed Electric Current and Travelling Magnetic Field, Metals, 2016, 6, p 170.

    Article  Google Scholar 

  77. T. Yuan, Z. Luo, and S. Kou, Grain Refining of Magnesium welds by Arc Oscillation, Acta Mater., 2016, 116, p 166–176.

    Article  ADS  Google Scholar 

  78. C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, and M. Qian, Grain Structure Control During Metal 3D Printing by High-Intensity Ultrasound, Nat. Commun., 2020, 11, p 142.

    Article  ADS  Google Scholar 

  79. T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, and A. Chiba, First Demonstration of Promising Selective Electron Beam Melting Method for Utilizing High-Entropy Alloys as Engineering Materials, Mater. Lett., 2015, 159, p 12–15.

    Article  Google Scholar 

  80. P. Kürnsteiner, M.B. Wilms, A. Weisheit, B. Gault, E.A. Jägle, and D. Raabe, High-Strength Damascus Steel by Additive Manufacturing, Nature, 2020, 582, p 515–519.

    Article  ADS  Google Scholar 

  81. Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, and J. Wei, Hierarchical Microstructure and Strengthening Mechanisms of a CoCrFeNiMn High Entropy Alloy Additively Manufactured by Selective Laser Melting, Scr. Mater., 2018, 154, p 20–24.

    Article  Google Scholar 

  82. R.D. Li, P.D. Niu, T.C. Yuan, P. Cao, C. Chen, and K.C. Zhou, Selective Laser Melting of an Equiatomic CoCrFeMnNi High-Entropy Alloy: Processability, Non-equilibrium Microstructure and Mechanical Property, J. Alloys Compd., 2018, 746, p 125–134.

    Article  Google Scholar 

  83. A. Piglione, B. Dovgyy, C. Liu, C.M. Gourlay, P.A. Hooper, and M.S. Pham, Printability and Microstructure of the CoCrFeMnNi High-Entropy Alloy Fabricated by Laser Powder Bed Fusion, Mater. Lett., 2018, 224, p 22–25.

    Article  Google Scholar 

  84. Z. Qiu, C. Yao, K. Feng, Z. Li, and P.K. Chu, Cryogenic Deformation Mechanism of CrMnFeCoNi High-Entropy Alloy Fabricated by Laser Additive Manufacturing Process, Int. J. Lightweight Mater. Manuf., 2018, 1, p 33–39.

    Google Scholar 

  85. S. Xiang, H.W. Luan, J. Wu, K.F. Yao, J.F. Li, X. Liu, Y.Z. Tian, W.L. Mao, H. Bai, G.M. Le, and Q. Li, Microstructures and Mechanical Properties of CrMnFeCoNi High Entropy Alloys Fabricated Using Laser Metal Deposition Technique, J. Alloys Compd., 2019, 773, p 387–392.

    Article  Google Scholar 

  86. X. Gao, and Y. Lu, Laser 3D Printing of CoCrFeMnNi High-Entropy Alloy, Mater. Lett., 2019, 236, p 77–80.

    Article  Google Scholar 

  87. Z. Tong, X. Ren, J. Jiao, W. Zhou, Y. Ren, Y. Ye, E.A. Larson, and J. Gu, Laser Additive Manufacturing of FeCrCoMnNi High-Entropy Alloy: Effect of Heat Treatment on Microstructure, Residual Stress and Mechanical Property, J. Alloys Compd., 2019, 785, p 1144–1159.

    Article  Google Scholar 

  88. Y. Chew, G.J. Bi, Z.G. Zhu, F.L. Ng, F. Weng, S.B. Liu, S.M.L. Nai, and B.Y. Lee, Microstructure and Enhanced Strength of Laser Aided Additive Manufactured CoCrFeNiMn High Entropy Alloy, Mater. Sci. Eng. A, 2019, 744, p 137–144.

    Article  Google Scholar 

  89. M.A. Melia, J.D. Carroll, S.R. Whetten, S.N. Esmaeely, J. Locke, E. White, I. Anderson, M. Chandross, J.R. Michael, N. Argibay, E.J. Schindelholz, and A.B. Kustas, Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy, Addit. Manuf., 2019, 29, p 100833.

    Google Scholar 

  90. W. Zhao, J.-K. Han, Y.O. Kuzminova, S.A. Evlashin, A.P. Zhilyaev, A.M. Pesin, J.-I. Jang, K.-D. Liss, and M. Kawasaki, Significance of Grain Refinement on Micro-Mechanical Properties and Structures of Additively-Manufactured CoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2021, 807, p 140898.

    Article  Google Scholar 

  91. J. Ren, C. Mahajan, L. Liu, D. Follette, W. Chen, and S. Mukherjee, Corrosion behavior of Selectively Laser Melted CoCrFeMnNi High Entropy Alloy, Metals, 2019, 9, p 1029.

    Article  Google Scholar 

  92. H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, and A. Chiba, Relationship Between the Microstructure and Mechanical Properties of an Equiatomic AlCoCrFeNi High-Entropy Alloy Fabricated by Selective Electron Beam Melting, Mater. Sci. Eng. A, 2016, 656, p 39–46.

    Article  Google Scholar 

  93. J. Joseph, P. Hodgson, T. Jarvis, X.H. Wu, N. Stanford, and D.M. Fabijanic, Effect of Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Additive Manufactured AlxCoCrFeNi High Entropy Alloys, Mater. Sci. Eng. A, 2018, 733, p 59–70.

    Article  Google Scholar 

  94. J. Joseph, T. Jarvis, X.H. Wu, N. Stanford, P. Hodgson, and D.M. Fabijanic, Comparative Study of the Microstructures and Mechanical Properties of Direct Laser Fabricated and Arc-Melted AlxCoCrFeNi High Entropy Alloys, Mater. Sci. Eng. A, 2015, 633, p 184–193.

    Article  Google Scholar 

  95. J. Joseph, N. Stanford, P. Hodgson, and D.M. Fabijanic, Tension/Compression Asymmetry in Additive Manufactured Face Centered Cubic High Entropy Alloy, Scr. Mater., 2017, 129, p 30–34.

    Article  Google Scholar 

  96. Z. Sun, X.P. Tan, M. Descoins, D. Mangelinck, S.B. Tor, and C.S. Lim, Revealing Hot Tearing Mechanism for an Additively Manufactured High-Entropy Alloy Via Selective Laser Melting, Scr. Mater., 2019, 168, p 129–133.

    Article  Google Scholar 

  97. Y. Brif, M. Thomas, and I. Todd, The Use of High-Entropy Alloys in Additive Manufacturing, Scr. Mater., 2015, 99, p 93–96.

    Article  Google Scholar 

  98. R. Zhou, Y. Liu, C.S. Zhou, S.Q. Li, W.Q. Wu, M. Song, B. Liu, X.P. Liang, and P.K. Liaw, Microstructures and Mechanical Properties of C-Containing FeCoCrNi High-Entropy Alloy Fabricated by Selective Laser Melting, Intermetallics, 2018, 94, p 165–171.

    Article  Google Scholar 

  99. D. Choudhuri, T. Alam, T. Borkar, B. Gwalani, A.S. Mantri, S.G. Srinivasan, M.A. Gibson, and R. Banerjee, Formation of a Huesler-Like L21 Phase in a CoCrCuFeNiAlTi High-Entropy Alloy, Scr. Mater., 2015, 100, p 36–39.

    Article  Google Scholar 

  100. I. Kunce, M. Polanski, and J. Bystrzycki, Microstructure and Hydrogen Storage Properties of a TiZrNbMoV High Entropy Alloy Synthesized Using Laser Engineered Net Shaping (LENS), Int. J. Hydrogen Energy, 2014, 39, p 9904–9910.

    Article  Google Scholar 

  101. T. Fujieda, H. Shiratori, K. Kuwabara, M. Hirota, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, and S. Watanabe, CoCrFeNiTi-Based High-Entropy Alloy with Superior Tensile Strength and Corrosion Resistance Achieved by a Combination of Additive Manufacturing Using Selective Electron Beam Melting and Solution Treatment, Mater. Lett., 2017, 189, p 148–151.

    Article  Google Scholar 

  102. P.K. Sarswat, S. Sarkar, A. Murali, W. Huang, W. Tan, and M.L. Free, Additive Manufactured New Hybrid High Entropy Alloys Derived from the AlCoFeNiSmTiVZr System, Appl. Surf. Sci., 2019, 476, p 242–258.

    Article  ADS  Google Scholar 

  103. T. Borkar, V. Chaudhary, B. Gwalani, D. Choudhuri, C.V. Mikler, V. Soni, T. Alam, R.V. Ramanujan, and R. Banerjee, A Combinatorial Approach for Assessing the Magnetic Properties of High Entropy Alloys: Role of Cr in AlCoxCr1–xFeNi, Adv. Eng. Mater., 2017, 19, p 1700048.

    Article  Google Scholar 

  104. T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, and R. Banerjee, A Combinatorial Assessment of AlxCrCuFeNi2 (0 < x < 1.5) Complex Concentrated Alloys: Microstructure, Microhardness, and Magnetic Properties, Acta Mater., 2016, 116, p 63–76.

    Article  ADS  Google Scholar 

  105. B. Gwalani, V. Soni, O.A. Waseem, S.A. Mantri, and R. Banerjee, Laser Additive Manufacturing of Compositionally Graded AlCrFeMoVx (x = 0 to 1) High-Entropy Alloy System, Opt. Laser Technol., 2019, 113, p 330–337.

    Article  ADS  Google Scholar 

  106. H. Dobbelstein, E.L. Gurevich, E.P. George, A. Ostendorf, and G. Laplanche, Laser Metal Deposition Of Compositionally Graded TiZrNbTa Refractory High-Entropy Alloys Using Elemental Powder Blends, Addit. Manuf., 2019, 25, p 252–262.

    Google Scholar 

  107. Y. Cai, L. Zhu, Y. Cui, and J. Han, Manufacturing of FeCoCrNi + FeCoCrNiAl Laminated High-Entropy Alloy by Laser Melting Deposition (LMD), Mater. Lett., 2021, 289, p 129445.

    Article  Google Scholar 

  108. Y.-K. Kim, J. Choe, and K.-A. Lee, Selective Laser Melted Equiatomic CoCrFeMnNi High-Entropy Alloy: Microstructure, Anisotropic Mechanical Response, and Multiple Strengthening Mechanism, J. Alloys Compd., 2019, 805, p 680–691.

    Article  Google Scholar 

  109. H. Li, Y. Huang, S. Jiang, Y. Lu, X. Gao, X. Lu, Z. Ning, and J. Sun, Columnar to Equiaxed Transition in Additively Manufactured CoCrFeMnNi High Entropy Alloy, Mater. Des., 2020, 197, p 109262.

    Article  Google Scholar 

  110. M. Zheng, C. Li, X. Zhang, Z. Ye, X. Yang, and J. Gu, The Influence of Columnar to Equiaxed Transition on Deformation Behavior of FeCoCrNiMn High Entropy Alloy Fabricated by Laser-Based Directed Energy Deposition, Addit. Manuf., 2020, 37, p 101660.

    Google Scholar 

  111. C. Haase, F. Tang, M.B. Wilms, A. Weisheit, and B. Hallstedt, Combining Thermodynamic Modeling and 3D Printing of Elemental Powder Blends for High-Throughput Investigation of High-Entropy Alloys—Towards Rapid Alloy Screening and Design, Mater. Sci. Eng. A, 2017, 688, p 180–189.

    Article  Google Scholar 

  112. L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-L. Chiu, J. Li, Z. Zhang, Q. Yu, and Z. Shen, Dislocation Network in Additive Manufactured Steel Breaks Strength-Ductility Trade-Off, Mater. Today, 2018, 21, p 354–361.

    Article  ADS  Google Scholar 

  113. J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, and X. Fan, Effect of C Content on Microstructure and Tensile Properties of As-Cast CoCrFeMnNi High Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 136–145.

    Article  Google Scholar 

  114. F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61, p 5743–5755.

    Article  ADS  Google Scholar 

  115. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, and Z.F. Zhang, Enhanced Strength and Ductility of Bulk CoCrFeMnNi High Entropy Alloy Having Fully Recrystallized Ultrafine-Grained Structure, Mater. Des., 2017, 133, p 122–127.

    Article  Google Scholar 

  116. H. Shahmir, J. He, Z. Lu, M. Kawasaki, and T.G. Langdon, Effect of Annealing on Mechanical Properties of a Nanocrystalline CoCrFeNiMn High-Entropy Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2016, 676, p 294–303.

    Article  Google Scholar 

  117. C. Kenel, N.P.M. Casati, and D.C. Dunand, 3D Ink-Extrusion Additive Manufacturing of CoCrFeNi High-Entropy Alloy Micro-lattices, Nat. Commun., 2019, 10, p 904.

    Article  ADS  Google Scholar 

  118. Y.-K. Kim, M.-S. Baek, S. Yang, and K.-A. Lee, In-Situ Formed Oxide Enables Extraordinary High-Cycle Fatigue Resistance in Additively Manufactured CoCrFeMnNi High-Entropy Alloy, Addit. Manuf., 2021, 38, p 101832.

    Google Scholar 

  119. R. Zhou, Y. Liu, B. Liu, J. Li, and Q. Fang, Precipitation Behavior of Selective Laser Melted FeCoCrNiC0.05 High Entropy Alloy, Intermetallics, 2019, 106, p 20–25.

    Article  Google Scholar 

  120. B. Li, L. Zhang, and B. Yang, Grain Refinement and Localized Amorphization of Additively Manufactured High-Entropy Alloy Matrix Composites Reinforced by Nano Ceramic Particles Via Selective-Laser-Melting/Remelting, Compos. Commun., 2020, 19, p 56–60.

    Article  Google Scholar 

  121. B. Li, L. Zhang, Y. Xu, Z. Liu, B. Qian, and F. Xuan, Selective Laser Melting of CoCrFeNiMn High Entropy Alloy Powder Modified with Nano-TiN Particles for Additive Manufacturing and Strength Enhancement: Process, Particle Behavior and Effects, Powder Technol., 2020, 360, p 509–521.

    Article  Google Scholar 

  122. B. Li, B. Qian, Y. Xu, Z. Liu, and F. Xuan, Fine-Structured CoCrFeNiMn High-Entropy Alloy Matrix Composite with 12 wt% TiN Particle Reinforcements Via Selective Laser Melting Assisted Additive Manufacturing, Mater. Lett., 2019, 252, p 88–91.

    Article  Google Scholar 

  123. J. Li, S. Xiang, H. Luan, A. Amar, X. Liu, S. Lu, Y. Zeng, G. Le, X. Wang, F. Qu, C. Jiang, and G. Yang, Additive Manufacturing of High-Strength CrMnFeCoNi High-Entropy Alloys-Based Composites with WC Addition, J. Mater. Sci. Technol., 2019, 35, p 2430–2434.

    Article  Google Scholar 

  124. A. Amar, J. Li, S. Xiang, X. Liu, Y. Zhou, G. Le, X. Wang, F. Qu, S. Ma, W. Dong, and Q. Li, Additive Manufacturing of High-Strength CrMnFeCoNi-Based High Entropy Alloys with TiC Addition, Intermetallics, 2019, 109, p 162–166.

    Article  Google Scholar 

  125. X. Gao, Z. Yu, W. Hu, Y. Lu, Z. Zhu, Y. Ji, Y. Lu, Z. Qin, and X. Lu, In Situ Strengthening of CrMnFeCoNi High-Entropy Alloy with Al Realized by Laser Additive Manufacturing, J. Alloys Compd., 2020, 847, p 156563.

    Article  Google Scholar 

  126. M.S.K.K.Y. Nartu, T. Alam, S. Dasari, S.A. Mantri, S. Gorsse, H. Siller, N. Dahotre, and R. Banerjee, Enhanced Tensile Yield Strength in Laser Additively Manufactured Al0.3CoCrFeNi High Entropy Alloy, Materialia, 2020, 9, p 100522.

    Article  Google Scholar 

  127. K. Zhou, Z. Wang, F. He, S. Liu, J. Li, J.-J. Kai, and J. Wang, A Precipitation-Strengthened high-Entropy Alloy for Additive Manufacturing, Addit. Manuf., 2020, 35, p 101410.

    Google Scholar 

  128. W.-C. Lin, Y.-J. Chang, T.-H. Hsu, S. Gorsse, F. Sun, T. Furuhara, and A.-C. Yeh, Microstructure and Tensile Property of a Precipitation Strengthened High Entropy Alloy Processed by Selective Laser Melting and Post Heat Treatment, Addit. Manuf., 2020, 36, p 101601.

    Google Scholar 

  129. I. Kunce, M. Polanski, and J. Bystrzycki, Structure and Hydrogen Storage Properties of a High Entropy ZrTiVCrFeNi Alloy Synthesized Using Laser Engineered Net Shaping (LENS), Int. J. Hydrogen Energy, 2013, 38, p 12180–12189.

    Article  Google Scholar 

  130. H. Zhang, Y. Zhao, J. Cai, S. Ji, J. Geng, X. Sun, and D. Li, High-Strength NbMoTaX Refractory High-Entropy Alloy with Low Stacking Fault Energy Eutectic Phase Via Laser Additive Manufacturing, Mater. Des., 2021, 201, p 109462.

    Article  Google Scholar 

  131. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534, p 227.

    Article  ADS  Google Scholar 

  132. P. Agrawal, S. Thapliyal, S.S. Nene, R.S. Mishra, B.A. McWilliams, and K.C. Cho, Excellent Strength-Ductility Synergy in Metastable High Entropy Alloy by Laser Powder Bed Additive Manufacturing, Addit. Manuf., 2020, 32, p 101098.

    Google Scholar 

  133. S. Thapliyal, S.S. Nene, P. Agrawal, T. Wang, C. Morphew, R.S. Mishra, B.A. McWilliams, and K.C. Cho, Damage-Tolerant, Corrosion-Resistant High Entropy Alloy with High Strength and Ductility by Laser Powder Bed Fusion Additive Manufacturing, Addit. Manuf., 2020, 36, p 101455.

    Google Scholar 

  134. B. Gwalani, S. Gangireddy, S. Shukla, C.J. Yannetta, S.G. Valentin, R.S. Mishra, and R. Banerjee, Compositionally Graded High Entropy Alloy with a Strong Front and Ductile Back, Mater. Today Commun., 2019, 20, p 100602.

    Article  Google Scholar 

  135. J.W. Pegues, M.A. Melia, R. Puckett, S.R. Whetten, N. Argibay, and A.B. Kustas, Exploring Additive Manufacturing as a High-Throughput Screening Tool for Multiphase High Entropy Alloys, Addit. Manuf., 2021, 37, p 101598.

    Google Scholar 

  136. Y. Li, Q. Zhou, S. Zhang, P. Huang, K. Xu, F. Wang, and T. Lu, On the Role of Weak Interface in Crack Blunting Process in Nanoscale Layered Composites, Appl. Surf. Sci., 2018, 433, p 957–962.

    Article  ADS  Google Scholar 

  137. A. Rohatgi, D.J. Harach, K.S. Vecchio, and K.P. Harvey, Resistance-Curve and Fracture Behavior of Ti-Al3Ti Metallic-Intermetallic Laminate (MIL) Composites, Acta Mater., 2003, 51, p 2933–2957.

    Article  ADS  Google Scholar 

  138. J.G. Kim, J.M. Park, J.B. Seol, J. Choe, J.H. Yu, S. Yang, and H.S. Kim, Nano-scale Solute Heterogeneities in the Ultrastrong Selectively Laser Melted Carbon-Doped CoCrFeMnNi Alloy, Mater. Sci. Eng. A, 2020, 773, p 9.

    Article  Google Scholar 

  139. V.V. Popov, A. Katz-Demyanetz, A. Koptyug, and M. Bamberger, Selective Electron Beam Melting of Al0.5CrMoNbTa0.5 High Entropy Alloys Using Elemental Powder Blend, Heliyon, 2019, 5, p e01188.

    Article  Google Scholar 

  140. S.H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S.J. Hong, and H.S. Kim, Structure and Properties of Ultrafine-Grained CoCrFeMnNi High-Entropy Alloys Produced by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2017, 698, p 591–604.

    Article  Google Scholar 

  141. Y.H. Zhou, Z.H. Zhang, Y.P. Wang, G. Liu, S.Y. Zhou, Y.L. Li, J. Shen, and M. Yan, Selective Laser Melting of Typical Metallic Materials: An Effective Process Prediction Model Developed by Energy Absorption and Consumption Analysis, Addit. Manuf., 2019, 25, p 204–217.

    Google Scholar 

  142. Y. Kuzminova, D. Firsov, A. Dudin, S. Sergeev, A. Zhilyaev, A. Dyakov, A. Chupeeva, A. Alekseev, D. Martynov, I. Akhatov, and S. Evlashin, The Effect of the Parameters Of The Powder Bed Fusion Process on the Microstructure and Mechanical Properties of CrFeCoNi Medium-Entropy Alloys, Intermetallics, 2020, 116, p 106651.

    Article  Google Scholar 

  143. Z. Wang, J. Gu, D. An, Y. Liu, and M. Song, Characterization of the Microstructure and Deformation Substructure Evolution in a Hierarchal High-Entropy Alloy by Correlative EBSD and ECCI, Intermetallics, 2020, 121, p 106788.

    Article  Google Scholar 

  144. M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, and Y. Liu, Nitrogen Induced Heterogeneous Structures Overcome Strength-Ductility Trade-Off in an Additively Manufactured High-Entropy Alloy, Appl. Mater. Today, 2020, 18, p 100498.

    Article  Google Scholar 

  145. X. Yang, Y. Zhou, S. Xi, Z. Chen, P. Wei, C. He, T. Li, Y. Gao, and H. Wu, Additively Manufactured Fine Grained Ni6Cr4WFe9Ti High Entropy Alloys with High Strength and Ductility, Mater. Sci. Eng. A, 2019, 767, p 138394.

    Article  Google Scholar 

  146. X. Yang, Y. Zhou, S. Xi, Z. Chen, P. Wei, C. He, T. Li, Y. Gao, and H. Wu, Grain-Anisotropied High-Strength Ni6Cr4WFe9Ti High Entropy Alloys with Outstanding Tensile Ductility, Mater. Sci. Eng. A, 2019, 767, p 138382.

    Article  Google Scholar 

  147. T. Fujieda, M. Chen, H. Shiratori, K. Kuwabara, K. Yamanaka, Y. Koizumi, A. Chiba, and S. Watanabe, Mechanical and Corrosion Properties of CoCrFeNiTi-Based High-Entropy Alloy Additive Manufactured Using Selective Laser Melting, Addit. Manuf., 2019, 25, p 412–420.

    Google Scholar 

Download references

Acknowledgment

W.C. acknowledges the financial support from the US National Science Foundation (CMMI-1927621 and DMR-2004429) and UMass Faculty Startup. P.K.L. very much appreciates the supports from (1) the U.S. Army Office Project (W911NF-13-1-0438 and W911NF-19-2-0049) with the program managers, Drs. Michael P. Bakas, David M. Stepp, and S. Mathaudhu, and (2) the National Science Foundation (DMR-1611180 and 1809640) with the program directors, Drs. Judith Yang, Gary Shiflet, and Diana Farkas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Phase Equilibria and Diffusion on the Thermodynamics and Kinetics of High-Entropy Alloys. This issue was organized by Dr. Michael Gao, National Energy Technology Laboratory; Dr. Ursula Kattner, NIST; Prof. Raymundo Arroyave, Texas A&M University; and the late Dr. John Morral, The Ohio State University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Ren, J., Mooraj, S. et al. Additive Manufacturing of High-Entropy Alloys: Microstructural Metastability and Mechanical Behavior. J. Phase Equilib. Diffus. 42, 748–771 (2021). https://doi.org/10.1007/s11669-021-00913-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00913-w

Keywords

Navigation