Skip to main content
Log in

Effects of fuel type on iron vanadate nanocatalyst synthesized by solution combustion method for methylene blue degradation

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Finding new catalysts and improving the characteristics of existing catalysts are major research issues for boosting dye degradation efficiency. For this purpose, iron vanadates have been prepared by the solution combustion method using oxalyldihydrazide (ODH) and glycine (GLY) as fuel. The surface properties of catalysts were altered, and the degradation efficiency of methylene blue (MB) was improved, depending on the synthesis process and fuel type. When the ODH-assisted FeVO4 has irregular morphology, the GLY-assisted FeVO4 has 100–200-nm uniform nanoparticles with a surface area of 21.96 g/m2 and it is performed as an excellent heterogeneous nanocatalyst for Fenton-like degradation of MB using H2O2 under sunlight. The narrow bandgap allows the adsorption of light and enhances photocatalytic activity. After the optimization of the catalyst amount, H2O2 concentration, and degradation time, the degradation efficiency of MB was found to be nearly 100% with high reusability. The process has a high-rate constant of 0.0304 min−1 and the possible reaction mechanism has been proposed using GC–MS. The GLY-assisted FeVO4 can be a potentially powerful and reusable heterogeneous catalyst for the other contaminants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alsulami QA et al (2021) Preparation of highly efficient sunlight driven photodegradation of some organic pollutants and H2 evolution over rGO/FeVO4 nanocomposites. Int J Hydrog Energy 46:27349–27363

    Article  CAS  Google Scholar 

  • Baykan D, Oztas NA (2012) Synthesis and characterization of iron orthophosphate by solution combustion method. Mater Res Bull 47(12):4013–4016

    Article  CAS  Google Scholar 

  • Baykan D, Oztas NA (2015) Synthesis of iron orthophosphate catalysts by solution and solution combustion methods for the hydroxylation of benzene to phenol. Mater Res Bull 64:294–300

    Article  CAS  Google Scholar 

  • Biswas SK, Baeg J-O (2013) Enhanced photoactivity of visible light responsive W incorporated FeVO4 photoanode for solar water splitting. Int J Hydrogen Energy 38(34):14451–14457

    Article  CAS  Google Scholar 

  • Braganza CF, Salker AV (2018) Al-doped FeVO4 nanoparticles for vapour phase methylation of phenol. ChemistrySelect 3(26):7602–7607

    Article  CAS  Google Scholar 

  • Burtch NC, Jasuja H, Walton KS (2014) Water stability and adsorption in metal–organic frameworks. Chem Rev 114(20):10575–10612

    Article  CAS  Google Scholar 

  • Casanova M et al (2015) Preparation, characterization and NH3–SCR activity of FeVO4 supported on TiO2–WO3–SiO2. Appl Catal B 176:699–708

    Article  Google Scholar 

  • Chachvalvutikul A, Kaowphong S (2020) Direct Z-scheme FeVO 4/BiOCl heterojunction as a highly efficient visible-light-driven photocatalyst for photocatalytic dye degradation and Cr (VI) reduction. Nanot 31(14):145704

    Article  CAS  Google Scholar 

  • Chang S et al (2021) FeVO4 nanopolyhedron photoelectrodes for stable and efficient water splitting. ChemSusChem 14:3010–3017

    Article  CAS  Google Scholar 

  • Chen H et al (2019) Improved visible light photocatalytic activity of mesoporous FeVO4 nanorods synthesized using a reactable ionic liquid. Chin J Catal 40(5):744–754

    Article  CAS  Google Scholar 

  • Cheng M et al (2018) Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coord Chem Rev 368:80–92

    Article  CAS  Google Scholar 

  • Deng J et al (2008) FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Appl Catal B 84(3–4):468–473

    Article  CAS  Google Scholar 

  • Dutta DP et al (2017) Effect of transition metal doping on the photocatalytic properties of FeVO4 nanoparticles. J Photochem Photobiol, A 335:102–111

    Article  CAS  Google Scholar 

  • Ekambaram S, Patil K (1995) Rapid synthesis and properties of FeVO4, AlVO4, YVO4 and Eu3+-doped YVO4. J Alloy Compd 217(1):104–107

    Article  CAS  Google Scholar 

  • Eshaq G et al (2020) Core/shell FeVO4@ BiOCl heterojunction as a durable heterogeneous Fenton catalyst for the efficient sonophotocatalytic degradation of p-nitrophenol. Sep Purif Technol 231:115915

    Article  CAS  Google Scholar 

  • Eshaq G et al (2020) Superior performance of FeVO4@ CeO2 uniform core-shell nanostructures in heterogeneous Fenton-sonophotocatalytic degradation of 4-nitrophenol. Journal of hazardous materials 382:121059

    Article  CAS  Google Scholar 

  • Fayazi M et al (2016) Enhanced Fenton-like degradation of methylene blue by magnetically activated carbon/hydrogen peroxide with hydroxylamine as Fenton enhancer. J Mol Liq 216:781–787

    Article  CAS  Google Scholar 

  • Ghani F et al (2019) Optimization of synthesis conditions of high–tap density FeVO4 hollow microspheres via spray pyrolysis for lithium–ion batteries. Appl Surf Sci 497:143718

    Article  CAS  Google Scholar 

  • Guo X, Wang K, Xu Y (2019) Tartaric acid enhanced CuFe2O4-catalyzed heterogeneous photo-Fenton-like degradation of methylene blue. Mater Sci Eng B 245:75–84

    Article  CAS  Google Scholar 

  • Gupta S, Yadava Y, Singh R (1986) Electrical transport properties of iron vanadate. J Mater Sci Lett 5(7):736–738

    Article  CAS  Google Scholar 

  • Häggblad R, Massa M, Andersson A (2009) Stability and performance of supported Fe–V-oxide catalysts in methanol oxidation. J Catal 266(2):218–227

    Article  Google Scholar 

  • Jiang H-Y, Xia Y-S, Li Y-Z (2018) Preparation and visible-light-driven photocatalytic performance of porous rod-like FeVO~ 4. J Inorg Mater-Beijing- 33(9):949–955

    Article  Google Scholar 

  • Jing H-P et al (2014) Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv 4(97):54454–54462

    Article  CAS  Google Scholar 

  • Khaksarfard Y, Ziyadi H, Heydari A (2019) Preparation of ceramic nanofibers of iron vanadate using electrospinning method. Mater Sci-Poland 37:645–651

    Article  CAS  Google Scholar 

  • Kim D-G, Ko S-O (2018) Oxidative degradation of the antibiotic oxytetracycline by Cu@ Fe3O4 core-shell nanoparticles. Sci Total Environ 631:608–618

    Google Scholar 

  • Kumar S et al (2019) Investigating FeVO4 as a cathode material for aqueous aluminum-ion battery. J Power Sources 426:151–161

    Article  CAS  Google Scholar 

  • Kumar A, Srivastava R (2019) FeVO4 decorated–SO3H functionalized polyaniline for direct conversion of sucrose to 2, 5-diformylfuran & 5-ethoxymethylfurfural and selective oxidation reaction. Mol Catal 465:68–79

    Article  CAS  Google Scholar 

  • Kwan WP, Voelker BM (2003) Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 37(6):1150–1158

    Article  CAS  Google Scholar 

  • Lan B et al (2020) FeVO4⋅ nH2O@ rGO nanocomposite as high performance cathode materials for aqueous Zn-ion batteries. Journal of Alloys and Compounds 818:153372

    Article  CAS  Google Scholar 

  • Li F-T et al (2015) Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 7(42):17590–17610

    Article  CAS  Google Scholar 

  • Li D et al (2020) Facile and green synthesis of highly dispersed tar-based heterogeneous Fenton catalytic nanoparticles for the degradation of methylene blue. J Clean Prod 246:119033

    Article  CAS  Google Scholar 

  • Liu X et al (2017) Synthesis and electrochemical performances of FeVO4· xH2O and FeVO4· xH2O/graphene as novel anode materials. Mater Lett 187:15–19

    Article  CAS  Google Scholar 

  • Liu Q et al (2021) The novel photo-Fenton-like few-layer MoS2/FeVO4 composite for improved degradation activity under visible light irradiation. Colloids Surf A Physicochem Eng Asp 623:126721

    Article  CAS  Google Scholar 

  • Lu Y et al (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15

    Article  CAS  Google Scholar 

  • Lyu K et al (2021) Two luminescent Ni II) coordination polymers for sensing of iron (III) ions/benzaldehyde and photocatalytic degradation of methylene blue under UV irradiation. J Mol Struct 1225:129128

    Article  CAS  Google Scholar 

  • Ma X-H et al (2018) Facile synthesis of amorphous FeVO4 nanoparticles as novel cathode materials for sodium-ion batteries. J Alloy Compd 768:181–189

    Article  CAS  Google Scholar 

  • Ma C et al (2019) Enhancement of H2O2 decomposition efficiency by the co-catalytic effect of iron phosphide on the Fenton reaction for the degradation of methylene blue. Applied Catalysis B: Environmental 259:118015

    Article  CAS  Google Scholar 

  • Malmusi A et al (2019) Ethanol aerobic and anaerobic oxidation with FeVO4 and V2O5 catalysts. Appl Catal A 570:139–147

    Article  CAS  Google Scholar 

  • Marberger A et al (2015) Generation of NH3 selective catalytic reduction active catalysts from decomposition of supported FeVO4. ACS Catal 5(7):4180–4188

    Article  CAS  Google Scholar 

  • Mishra A et al (2020) Rapid photodegradation of methylene blue dye by rGO-V2O5 nano composite. J Alloys Compd 842:155746

    Article  CAS  Google Scholar 

  • Mosleh M (2017) Nanocrystalline iron vanadate: facile morphology-controlled preparation, characterization and investigation of optical and photocatalytic properties. J Mater Sci: Mater Electron 28(8):5866–5871

    CAS  Google Scholar 

  • Nie J et al (2019) Pd0 nanocluster-modified porous FeVO4 nanorods with selective gas sensing property for benzyl alcohol detection. Mater Lett 241:47–50

    Article  CAS  Google Scholar 

  • Niu X et al (2019) Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Materials 22:160–167

    Article  Google Scholar 

  • Ozer D et al (2019) Fuel effects on Li2CuP2O7 synthesized by solution combustion method for lithium-ion batteries. Ceram Int 45(4):4626–4630

    Article  CAS  Google Scholar 

  • Ozturk B, Soylu GSP (2015) Synthesis of surfactant-assisted FeVO4 nanostructure: characterization and photocatalytic degradation of phenol. J Mol Catal a: Chem 398:65–71

    Article  CAS  Google Scholar 

  • Patterson E, Shelden C, Stockton B (1977) Kubelka-Munk optical properties of a barium sulfate white reflectance standard. Appl Opt 16(3):729–732

    Article  CAS  Google Scholar 

  • Rahimpour R et al (2020) Fabrication of ZnO/FeVO4 heterojunction nanocomposite with high catalytic activity in photo-Fenton-like process. J Alloys Compd 817:152702

    Article  CAS  Google Scholar 

  • Sajid MM et al (2021) Photocatalytic performance of ferric vanadate (FeVO4) nanoparticles synthesized by hydrothermal method. Mater Sci Semicond Process 129:105785

    Article  CAS  Google Scholar 

  • Sasikumar S, Vijayaraghavan R (2008) Solution combustion synthesis of bioceramic calcium phosphates by single and mixed fuels—a comparative study. Ceram Int 34(6):1373–1379

    Article  CAS  Google Scholar 

  • Shokoofehpoor F, Chaibakhsh N, Ghanadzadeh Gilani A (2019) Optimization of sono-Fenton degradation of Acid Blue 113 using iron vanadate nanoparticles. Sep Sci Technol 54(17):2943–295

    Article  CAS  Google Scholar 

  • Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  • Wang F et al (2010) Catalytic oxidative dehydration of glycerol over a catalyst with iron oxide domains embedded in an iron orthovanadate phase. Chemsuschem 3(12):1383–1389

    Article  CAS  Google Scholar 

  • Wang C-C et al (2016) Photocatalytic degradation of methylene blue and methyl orange in a Zn (II)-based Metal-Organic Framework. Desalin Water Treat 57(38):17844–17851

    Article  CAS  Google Scholar 

  • Wu G et al (2018) The promotional role of Ni in FeVO4/TiO2 monolith catalyst for selective catalytic reduction of NOx with NH3. Appl Surf Sci 427:24–36

    Article  CAS  Google Scholar 

  • Xia S et al (2015) Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation pathways. Phys Chem Chem Phys 17(7):5345–5351

    Article  CAS  Google Scholar 

  • Yan N et al (2016) The preparation of FeVO4 as a new sort of anode material for lithium ion batteries. Mater Lett 165:223–226

    Article  CAS  Google Scholar 

  • Yu Y et al (2016) Peroxidase-like activity of FeVO4 nanobelts and its analytical application for optical detection of hydrogen peroxide. Sens Actuators B Chem 233:162–172

    Article  CAS  Google Scholar 

  • Wang M, Zhang LF, Luan HY (2011a) Synthesis and photocatalytic property of FeVO4 photocatalyst by sol-gel method. Adv Mat Res 328–330:1507–1511

  • Wang M, Liu Q, Jiang CZ (2011b) Characterization and photocatalytic activity of FeVO4 photocatalysts synthesized via a surfactant-assisted sol-gel method. Adv Mat Res 197–198:926–930

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Ozer.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 419 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer, D., Tunca, E.T. & Oztas, N.A. Effects of fuel type on iron vanadate nanocatalyst synthesized by solution combustion method for methylene blue degradation. J Nanopart Res 23, 167 (2021). https://doi.org/10.1007/s11051-021-05303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05303-4

Keywords

Navigation