Skip to main content

Advertisement

Log in

Quantum mechanics descriptors in a nano-QSAR model to predict metal oxide nanoparticles toxicity in human keratinous cells

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The production of nanomaterials for biomedical research and applications increases exponentially. Interestingly, there is an increase in the use of nanoparticles in pharmaceutical sciences for diagnosis and treatment purposes, and therefore, nano-toxicity becomes one of the major role aspects in the future of pharmaceutical nanotechnology. This study focused on discerning and identifying the main variables that govern a group of metal oxide nanoparticles’ toxicity in human keratinous cells (HaCaT), combining computational simulation and semiempirical calculations with the available experimental data allowed revealing and explaining the nanoparticle toxicity for the corresponding cell line, through the development and validation of an interpretive nano-QSAR model with acceptable statistical quality by applying a multivariate linear regression with a coupled genetic algorithm. This function included only two descriptors, orthogonal to each other: the enthalpy of a standard formation of metal oxide nanocluster\( {\Delta \mathrm{H}}_{\mathrm{f}}^{\mathrm{c}} \) and the absolute value of Fermi energy from the cluster\( {\upepsilon}_{\mathrm{Fermi}}^{\mathrm{c}} \).The values of statistical indices obtained for this model showed its quality and robustness, for example, R2 = 0.90; \( {\mathrm{Q}}_{\mathrm{cv}}^2 \) = 0.86 and F = 37.15. This study demonstrated the need to use quantum-mechanical descriptors to explain the toxicity of metal oxide nanoparticles, capable of characterizing the electronic state of nanostructures. Regularization methods based on LASSO and Ridge regression have been employed in the model selection and validation. Furthermore, we propose a mechanism for toxicological effects applicable to a relevant group of nanoparticles, as well as their generalization to other toxicity studies not available in the literature, with potential nanopharmaceutical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Datasets analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable

References

  • Beyer M, Williams ER, Bondybey VE (1999) Unimolecular reactions of dihydrated alkaline earth metal dications M2+(H2O)2, M = Be, Mg, Ca, Sr, and Ba: salt-bridge mechanism in the proton-transfer reaction M2+(H2O)2 → MOH+ + H3O+. J Am Chem Soc 121(7):1565–1573. https://doi.org/10.1021/ja982653+

    Article  CAS  Google Scholar 

  • De Oliveira DB, Gaudio AC (2000) BuildQSAR: a new computer program for QSAR analysis. Quant Struct-Act Relat 19(6):599–601

  • Hourahine B, Aradi B, Blum V, Bonafé F, Buccheri A, Camacho C, Cevallos C, Deshaye MY, Dumitric˘a T, Dominguez A, Ehlert S, Elstner M, van der Heide T, Hermann J, Irle S, Kranz JJ, Köhler C, Kowalczyk T, Kubaˇr T, Lee IS, Lutsker V, Maurer RJ, Min SK, Mitchell I, Negre C, Niehaus TA, Niklasson AMN, Page AJ, Pecchia A, Penazzi G, Persson MP, Rˇ ezácˇ J, Sánchez CG, Sternberg M, Stöhr M, Stuckenberg F, Tkatchenko A, Yu VW-z, Frauenheim T, (2016) DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J Chem Phys 152(12)

  • Enoch SJ (2010) The use of quantum mechanics derived descriptors in computational toxicology. In: Puzyn T, Leszczynski J, Cronin M (eds) Recent Advances in QSAR Studies. Challenges and Advances in Computational Chemistry and Physics, vol 8. Springer, Dordrecht, New York, pp 13–28. https://doi.org/10.1007/978-1-4020-9783-6_2

  • Etienne T, Michaux C, Monari A, Assfeld X, Perpète EA (2014) Theoretical computation of Betain B30 solvatochromism using a Polarizable Continuum Model. Dyes Pigments 100:24–31. https://doi.org/10.1016/j.dyepig.2013.07.017

    Article  CAS  Google Scholar 

  • Fan G, Zhu S, Ni K, Xu H (2017) Theoretical study of the adsorption of aromatic amino acids on a single-wall boron nitride nanotube with empirical dispersion correction. Can J Chem 95(6):710–716

    Article  CAS  Google Scholar 

  • Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) Solvent effects 5. The influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. J Phys Chem 100:16098–16104. https://doi.org/10.1021/jp960488j

    Article  CAS  Google Scholar 

  • Gomaa EA, Tahoon MA, Negm A (2017) Aqueous micro-solvation of Li+ ions: thermodynamics and energetic studies of Li+-(H2O)n (n=1–6) structures. J Mol Liq 241:595–602. https://doi.org/10.1016/j.molliq.2017.06.061

    Article  CAS  Google Scholar 

  • Gramatica P (2010) Chemometric methods and theoretical molecular descriptors in predictive QSAR modeling of the environmental behavior of organic pollutants. In: Puzyn T, Leszczynski J, Cronin M (eds) Recent Advances in QSAR Studies. Challenges and Advances in Computational Chemistry and Physics, vol 8. Springer, Dordrecht, New York, pp 327–366. https://doi.org/10.1007/978-1-4020-9783-6_12

  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4(1):17

    Article  CAS  Google Scholar 

  • Hourahine B, Aradi B, Blum V, Bonafe F, Buccheri A, Camacho C, Cevallos C, Deshaye M, Dumitrică T, Dominguez A (2020) DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J Chem Phys 152(12):124101

    Article  CAS  Google Scholar 

  • Kurban H, Dalkilic M, Temiz S, Kurban M (2020) Tailoring the structural properties and electronic structure of anatase, brookite and rutile phase TiO2 nanoparticles: DFTB calculations. Comput Mater Sci 183:109843. https://doi.org/10.1016/j.commatsci.2020.109843

    Article  CAS  Google Scholar 

  • Lei XL, Pan BC (2012) The geometries and proton transfer of hydrated divalent lead ion clusters [Pb(H2O)n]2+(n = 1–17). J Theor Comput Chem 11(05):1149–1164. https://doi.org/10.1142/s0219633612500769

    Article  CAS  Google Scholar 

  • Maheshwary S, Patel N, Sathyamurthy N, Kulkarni AD, Gadre SR (2001) Structure and stability of water clusters (H2O)n, n = 8−20: an ab initio investigation. J Phys Chem A 105(46):10525–10537. https://doi.org/10.1021/jp013141b

    Article  CAS  Google Scholar 

  • Mananghaya M, Rodulfo E, Santos GN, Villagracia AR (2012) Theoretical investigation on the solubilization in water of functionalized single-wall carbon nanotubes. J Nanotechnol. https://doi.org/10.1155/2012/780815

  • Mu Y, Wu F, Zhao Q, Ji R, Qie Y, Zhou Y, Hu Y, Pang C, Hristozov D, Giesy JP (2016) Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Nanotoxicology 10(9):1207–1214

    Article  CAS  Google Scholar 

  • Pérez C, Muckle MT, Zaleski DP, Seifert NA, Temelso B, Shields GC, Kisiel Z, Pate BH (2012) Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science 336(6083):897–901. https://doi.org/10.1126/science.1220574

    Article  CAS  Google Scholar 

  • Portier J, Hilal H, Saadeddin I, Hwang S, Subramanian M, Campet G (2004) Thermodynamic correlations and band gap calculations in metal oxides. Prog Solid State Chem 32(3-4):207–217

    Article  CAS  Google Scholar 

  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang H-M, Toropov A, Leszczynska D, Leszczynski J (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6(3):175. https://doi.org/10.1038/NNANO.2011.10

    Article  CAS  Google Scholar 

  • QSAR Toolbox (n.d.) https://qsartoolbox.org. Accessed 1 Dec 2019

  • R Development Core Team (2008) R: A Language and Environment for Statistical Computing 3.6.1 edn., Vienna, Austria. https://www.r-project.org. Accessed 29 Dec 2019

  • Saiyed M, Patel R, Patel S (2011) Toxicology perspective of nanopharmaceuticals: a critical review. Int J Pharm Sci Nanotechnol 4(1):1287–1295

    CAS  Google Scholar 

  • Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  • Sizochenko N, Rasulev B, Gajewicz A, Kuz'min V, Puzyn T, Leszczynski J (2014) From basic physics to mechanisms of toxicity: The “liquid drop” approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Nanoscale 6(22):13986–13993

    Article  CAS  Google Scholar 

  • Tibshirani R (1996) Regression Shrinkage and Selection Via the Lasso. J R Stat Soc Ser B Methodol 58(1):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  Google Scholar 

  • Uudsemaa M, Tamm T (2001) Calculations of hydrated titanium ion complexes: structure and influence of the first two coordination spheres. Chem Phys Lett 342(5):667–672. https://doi.org/10.1016/S0009-2614(01)00617-0

    Article  CAS  Google Scholar 

  • Wander MCF, Clark AE (2008) Hydration properties of aqueous Pb(II) ion. Inorg Chem 47(18):8233–8241. https://doi.org/10.1021/ic800750g

    Article  CAS  Google Scholar 

  • Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305. https://doi.org/10.1039/B508541A

    Article  CAS  Google Scholar 

  • Wendumu TB, Seifert G, Lorenz T, Joswig J-O, Enyashin A (2014) Optical properties of triangular molybdenum disulfide nanoflakes. J Phys Chem Lett 5(21):3636–3640

    Article  CAS  Google Scholar 

  • Williams T, Kelley C (n.d.) GNUplot: An Interactive Plotting Program. 5.2 edn., http://www.gnuplot.info. Accessed 21 Jan 2020

  • Winkler DA, Mombelli E, Pietroiusti A, Tran L, Worth A, Fadeel B, McCall MJ (2013) Applying quantitative structure–activity relationship approaches to nanotoxicology: current status and future potential. Toxicology 313(1):15–23

    Article  CAS  Google Scholar 

  • Yang N, Yang D, Chen L, Liu D, Cai M, Fan X (2017) A first-principle theoretical study of mechanical and electronic properties in graphene single-walled carbon nanotube junctions. Materials 10(11):1300

    Article  Google Scholar 

  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao Y-P (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368

    Article  CAS  Google Scholar 

  • Zheng Z, Brédas J-L, Coropceanu V (2016) Description of the Charge Transfer States at the Pentacene/C60 Interface: combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model. J Phys Chem Lett 7(13):2616–2621. https://doi.org/10.1021/acs.jpclett.6b00911

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fidel Antonio Castro-Smirnov.

Ethics declarations

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Online Resource 1

Summary of geometries implemented in Avogadro software v1.2.0 for the construction of a metal oxide cluster. (PDF 218 kb)

Online Resource 2

Summary of the calculated thermodynamic properties. (XLSX 31 kb)

Appendix

Appendix

Table 5 Summary of theoretical descriptors calculated from simulation and semiempirical equations for the nano-QSAR study
Table 6 Pearson’s coefficient correlation for the nano-QSAR descriptors. Values in boldface indicate they are above 0.7 (critical value or threshold)
Table 7 Coefficients for nano-QSAR and LASSO model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sifonte, E.P., Castro-Smirnov, F.A., Jimenez, A.A.S. et al. Quantum mechanics descriptors in a nano-QSAR model to predict metal oxide nanoparticles toxicity in human keratinous cells. J Nanopart Res 23, 161 (2021). https://doi.org/10.1007/s11051-021-05288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05288-0

Keywords

Navigation