Skip to main content
Log in

Interaction of Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, and Cr3+ metal ions on B12N12 fullerene-like cages: a theoretical study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Metal ions are the common pollutants in the aquatic environment, harmful to living organisms, non-biodegradable, and toxic even at low concentrations, thus, the present study aimed theoretically evaluate the potential for interaction of Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, and Cr3+ metal ions potentially toxic with B12N12 nanocage. The location of the possible interaction sites was initially assessed by the Frontier Molecular Orbitals (FMOs), Molecular Electrostatic Potential, atomic charges NPA and the analysis allowed to predict the possible interaction sites. The results show that for ions with unpaired electrons in the valence shell, the interaction can occur on the boron atom or on the nitrogen atom. The interaction of the metal ions in the six-atom ring B–N–B–N–B–N is also possible, and site of interaction presented the longest bond lengths, > 3.2 Å. The calculations of the energies involved in the processes, binding energy (EBind), Gibbs and enthalpy proved that the interaction of the metal cations with the B12N12 nanocage is almost all spontaneously and follows the order: Zn2+ > Ni2+ > Cu2+ > Cr3+ > Co2+ > Fe2+ > Pb2+. The Quantum Theory of Atoms in Molecule (QTAIM) was used to determine the nature of the interaction between the metal ions and the nanocage showing that interactions are non-covalent or partially covalent. Finally, the results from NPA charge after the interaction showed that the direction of charge transfer is from metal ions to the nanocage.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Awad AM, Jalab R, Benamor A, Nasser MS, Ba-Abbad MM, El-Naas M, Mohammad AW (2020) J Mol Liq 301:112335

    Article  CAS  Google Scholar 

  2. Rai PK, Lee SS, Zhang M, Tsang YF, Kim K-H (2019) Environ Int 125:365

    Article  CAS  PubMed  Google Scholar 

  3. Vardhan KH, Kumar PS, Panda RC (2019) J Mol Liq 290:111197

    Article  CAS  Google Scholar 

  4. Singh NB, Nagpal G, Agrawal S, Rachna (2018) Environ Technol Innov 11:187

    Article  Google Scholar 

  5. Jia X, Fu T, Hu B, Shi Z, Zhou L, Zhu Y (2020) J Hazard Mater 393:122424

    Article  CAS  PubMed  Google Scholar 

  6. Stefanowicz AM, Kapusta P, Zubek S, Stanek M, Woch MW (2020) Chemosphere 240:124922

    Article  CAS  PubMed  Google Scholar 

  7. Rahman Z (2020) J Hazard Mater 396:122682

    Article  CAS  PubMed  Google Scholar 

  8. Saadi S, Abdulhakim M, Zurina W, Khalid M, Fayaed S, Syuhadaa N, Sai L (2019) J Clean Prod 230:783

    Article  CAS  Google Scholar 

  9. Khademian E, Salehi E, Sanaeepur H, Galiano F, Figoli A (2020) Sci Total Environ 738:139829

    Article  CAS  PubMed  Google Scholar 

  10. de Souza Neves Ellendersen L, Milinsk MC, Feroldi M, Volkweis Zadinelo I, Dena dos Santos L, Bolzón de Muniz GI, Gasparrini LJ, Alves HJ (2018) J Environ Chem Eng 6:6131

    Article  CAS  Google Scholar 

  11. Zhang Y, Wu B, Xu H, Liu H, Wang M, He Y, Pan B (2016) NanoImpact 3–4:22

    Article  Google Scholar 

  12. Anastopoulos I, Bhatnagar A, Lima EC (2016) J Mol Liq 221:954

    Article  CAS  Google Scholar 

  13. Gómez-Ceballos V, García-Córdoba A, Zapata-Benabithe Z, Velásquez J, Quintana G (2020) Polym Degrad Stab 179:109271

    Article  CAS  Google Scholar 

  14. Ramasamy DL, Repo E, Srivastava V, Sillanpää M (2017) Water Res 114:264

    Article  CAS  PubMed  Google Scholar 

  15. Yakout AA, El-Sokkary RH, Shreadah MA, Abdel Hamid OG (2016) Carbohyd Polym 148:406

    Article  CAS  Google Scholar 

  16. Reis DT, de Aguiar Filho SQ, Grotto CGL, Bihain MFR, Pereira DH (2020) Theor Chem Acc 139:96

    Article  CAS  Google Scholar 

  17. Reis DT, Ribeiro IHS, Pereira DH (2020) Polym Bull 77:3443

    Article  CAS  Google Scholar 

  18. Ribeiro IHS, Reis DT, Pereira DH (2019) Mol Model 25:267

    Article  CAS  Google Scholar 

  19. Kegl T, Košak A, Lobnik A, Novak Z, Kralj AK, Ban I (2020) J Hazard Mater 386:121632

    Article  CAS  PubMed  Google Scholar 

  20. Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X (2019) Environ Pollut 246:608

    Article  CAS  PubMed  Google Scholar 

  21. Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2021) J Hazard Mater 401:123401

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Pang H, Wang H, Yu S, Chen Z, Zhang P, ChenL SG, Saleh Alharbi N, Omar Rabah S, Wang X (2021) Chem Eng J 406:127139

    Article  CAS  Google Scholar 

  23. Wadhawan S, Jain A, Nayyar J, Mehta SK (2020) J Water Process Eng 33:101038

    Article  Google Scholar 

  24. Mirzaei M (2009) Monatsh Chem 140:1275

    Article  CAS  Google Scholar 

  25. Abbasi M, Nemati-Kande E, Mohammadi MD (2018) Comput Theor Chem 1132:1

    Article  CAS  Google Scholar 

  26. Mirzaei M, Hadipour NL (2008) Phys E 40:800

    Article  CAS  Google Scholar 

  27. Strout DL (2000) J Phys Chem A 104:3364

    Article  CAS  Google Scholar 

  28. Fallahi P, Jouypazadeh H, Farrokhpour H (2018) J Mol Liq 260:138

    Article  CAS  Google Scholar 

  29. Shokuhi Rad A, Ayub K (2016) Vacuum 131:135

    Article  CAS  Google Scholar 

  30. Rad AS, Samipour V, Movaghgharnezhad S, Mirabi A, Shahavi MH, Moghadas BK (2019) Surf Interfaces 15:30

    Article  CAS  Google Scholar 

  31. Wang R, Zhang D, Liu C (2005) Chem Phys Lett 411:333

    Article  CAS  Google Scholar 

  32. Zhao Z, Li Z, Wang Q (2020) Chem Phys Lett 739:136922

    Article  CAS  Google Scholar 

  33. Baei MT (2013) Superlattices Microstruct 58:31

    Article  CAS  Google Scholar 

  34. Shakerzadeh E (2016) Phys E 78:1

    Article  CAS  Google Scholar 

  35. Larki S, Shakerzadeh E, Anota EC, Behjatmanesh-Ardakani R (2019) Chem Phys 526:110424

    Article  CAS  Google Scholar 

  36. Kian M, Tazikeh-Lemeski E (2020) J Mol Struct 1217:128455

    Article  CAS  Google Scholar 

  37. Esrafili MD, Nurazar R (2014) Surf Sci 626:44

    Article  CAS  Google Scholar 

  38. Onsori O, Alipour E (2017) J Mol Graph Model 79:223

    Article  PubMed  CAS  Google Scholar 

  39. Harismah K, Ozkendir OM, Mirzaei M (2020) Adv Sci Eng Inf Technol 1:74

    Google Scholar 

  40. Hou X, Fu F, Bai C, Lei G (2020) Comput Theor Chem 1171:112660

    Article  CAS  Google Scholar 

  41. Shakerzadeh E, Khodayar E, Noorizadeh S (2016) Comput Mater Sci 118:155

    Article  CAS  Google Scholar 

  42. Zhu H, Zhao C, Cai Q, Fu X, Sheykhahmad FR (2020) Inorg Chem Commun 114:107808

    Article  CAS  Google Scholar 

  43. Abdolahi N, Aghaei M, Soltani A, Azmoodeh Z, Balakheyli H, Heidari F (2018) Spectrochim Acta A Mol Biomol Spectrosc 204:348

    Article  CAS  PubMed  Google Scholar 

  44. Matxain JM, Eriksson LA, Mercero JM, Lopez X, Piris M, Ugalde JM, Poater J, Matito E, Solà M (2007) J Phys Chem C 111:13354

    Article  CAS  Google Scholar 

  45. Ramalho TC, Pereira DH (2009) Mol Simul 35:1269

    Article  CAS  Google Scholar 

  46. Yin Q, Liu M, Li Y, Li H, Wen Z (2021) Chemosphere 269:129374

    Article  CAS  PubMed  Google Scholar 

  47. Menazea AA, Ezzat HA, Omara W, Basyouni OH, Ibrahim SA, Mohamed AA, Tawfik W, Ibrahim MA (2020) Comput Theor Chem 1189:112980

    Article  CAS  Google Scholar 

  48. Zhou S, Sun X, Jiang G (2021) J Mol Model 27:29

    Article  CAS  PubMed  Google Scholar 

  49. Pearson RG (1968) J Chem Educ 45:581

    Article  CAS  Google Scholar 

  50. Pearson RG (1968) J Chem Educ 45:643

    Article  CAS  Google Scholar 

  51. Yuqi B, Chang L (2020) Inorg Chem Commun 119:108069

    Article  CAS  Google Scholar 

  52. Cowen T, Karim K, Piletsky S (2016) Anal Chim Acta 936:62

    Article  CAS  PubMed  Google Scholar 

  53. Mirzaei M (2020) Adv J Sci Eng 1:1

    Article  Google Scholar 

  54. Tahmasebi E, Shakerzadeh E (2020) Lab-In-Silico 1:16

    Google Scholar 

  55. Bhagat SK, Tung TM, Yaseen ZM (2020) J Clean Prod 250:119473

    Article  CAS  Google Scholar 

  56. Costa AMF, de Aguiar Filho SQ, Santos TJ, Pereira DH (2021) J Mol Liq 331:115730

    Article  CAS  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford

  58. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  59. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  60. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:20

    Article  Google Scholar 

  61. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  62. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  63. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  64. Hariharan PC, Pople JA (1973) Theoret Chim Acta 28:213

    Article  CAS  Google Scholar 

  65. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456

    Article  CAS  PubMed  Google Scholar 

  66. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  PubMed  Google Scholar 

  67. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  68. Koopmans T (1934) Physica 1:104

    Article  Google Scholar 

  69. Dennington R, Keith T, Millam J (2009) Gauss view, Version 5. Semichem Inc., Shawnee Mission

    Google Scholar 

  70. Bader RFW, Essén H (1984) J Chem Phys 80:1943

    Article  CAS  Google Scholar 

  71. Bader RFW (1990) Atoms in molecules: a quantum theory, 1st edn. Oxford Univ. Press, Oxford

    Google Scholar 

  72. Keith TA, Bader RFW, Aray Y (1996) Int J Quantum Chem 57:183

    Article  CAS  Google Scholar 

  73. Popelier PLA (1999) J Phys Chem A 103:2883

    Article  CAS  Google Scholar 

  74. Todd A, Keith T (2017) AIMAll (Version 10.05. 04), Gristmill Software, Overland Park KS, USA

Download references

Acknowledgements

The authors acknowledge the Center for Computational Engineering and Sciences (Financial support from FAPESP Fundação de Amparo à Pesquisa, Grant 2013/08293-7, and Grant 2017/11485-6) and the National Center for High Performance Processing (Centro Nacional de Processamento de Alto Desempenho—CENAPAD) in São Paulo for computational resources. The authors would also like to acknowledge funding from CAPES (Coordination of Improvement of Higher Education Personnel—Brazil, Funding Code 001 CAPES) and the PROPESQ/Federal University of Tocantins (Edital Nº29 /2020 para tradução de artigos científicios da Universidade Federal do Tocantins—PROPESQ/UFT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Henrique Pereira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, A.M.F., Silva, T.S., Oh, L.B.C. et al. Interaction of Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, and Cr3+ metal ions on B12N12 fullerene-like cages: a theoretical study. Monatsh Chem 152, 915–922 (2021). https://doi.org/10.1007/s00706-021-02818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02818-3

Keywords

Navigation