Skip to main content
Log in

Voltammetric determination of sulfanilamide using a cobalt phthalocyanine chitosan composite

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this paper, a composite based on chitosan and cobalt phthalocyanine immobilized onto a glassy carbon electrode is presented for the sensitive determination of sulfanilamide in pharmaceutical and urine samples. The modification performed on the electrode surface, by the deposition of this composite, exhibits an irreversible anodic peak at 0.97 V vs. Ag/AgCl, KClsat in phosphate buffer at pH 7.00 for sulfanilamide. Results show that peak potential is influenced linearly by the pH of the supporting electrolyte, exhibiting a slope of 0.054 V/pH. Using differential pulse voltammetry, detection of sulfanilamide was possible in a linear range from 1.00 to 53.00 μmol dm−3 with a detection limit and quantification limit of 0.27 and 0.91 μmol dm−3, respectively. Importantly, the sensor showed practical applications as an analytical tool for the quantification of sulfanilamide in pharmaceutical formulations and urine samples. The electrochemical approach detailed here has been validated to drug samples using a spectrophotometric method. The method proposed presents good linearity, low quantification and detection limits being of excellent applicability in pharmaceutical and urine samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sui YF, Li D, Wang J, Bheemanaboina RRY, Ansari MF, Gan LL, Zhou CH (2020) Bioorg Med Chem Lett 30:126982

    Article  CAS  PubMed  Google Scholar 

  2. Petrović S, Tačić A, Savić S, Nikolić V, Nikolić L, Savić S (2017) Saudi Pharm J 25:1194

    Article  PubMed  PubMed Central  Google Scholar 

  3. Al SM, Ghemrawi R (2020) Microbiomics. Academic Press, p 279

    Google Scholar 

  4. Medina MJ, Legido-Quigley H, Hsu LY (2020) In: global health security. Springer, p 209

    Book  Google Scholar 

  5. Ahamad A, Madhav S, Singh AK, Kumar A, Singh P (2019) In: sensors in water pollutants monitoring: role of material. Springer, p 21

    Google Scholar 

  6. Meng T, Cheng W, Wan T, Wang M, Ren J, Li Y, Huang C (2019) Environ Technol 23:1

    Google Scholar 

  7. Dórea NR, Santos RHT, Fraga LE, Garcia CAB, Garcia HL, Arguelho M de LP de M (2014) In: Proceedings of Safety, Health and Environment World Congress, p 87

  8. Yuan SF, Liu ZH, Yin H, Dang Z, Wu PX, Zhu NW, Lin Z (2019) Sci Total Environ 653:815

    Article  CAS  PubMed  Google Scholar 

  9. Muhammad J, Khan S, Su JQ, Hesham AEL, Ditta A, Nawab J, Ali A (2020) J Soils Sediments 20:486

    Article  CAS  Google Scholar 

  10. Albero B, Tadeo JL, Miguel E, Pérez RA (2019) Anal Bioanal Chem 411:6129

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Xia S, Han X, Fu Z (2020) J Anal Methods Chem 2020:1

    CAS  Google Scholar 

  12. Maggira M, Deliyanni EA, Samanidou VF (2019) Molecules 24:2086

    Article  CAS  PubMed Central  Google Scholar 

  13. Sereshti H, Khosraviani M, Amini-fazl MS (2014) Talanta 121:199

    Article  CAS  PubMed  Google Scholar 

  14. López-Sánchez M, Ruedas-Rama MJ, Ruiz-Medina A, Molina-Díaz A, Ayora-Cañada MJ (2008) Talanta 74:1603

    Article  PubMed  CAS  Google Scholar 

  15. Nevado JJB, Salinas F, de Orbe PI, Capitan-Vallvey LF (1991) J Pharm Biomed Anal 9:117

    Article  Google Scholar 

  16. Mohammad-Razdari A, Ghasemi-Varnamkhasti M, Izadi Z, Rostami S, Ensafi AA, Siadat M, Losson E (2019) J Food Compos Anal 82:103252

    Article  CAS  Google Scholar 

  17. He B, Li M (2018) Anal Bioanal Chem 410:7671

    Article  CAS  PubMed  Google Scholar 

  18. Canales C, Ramos D, Fierro A, Antilén M (2019) Electrochim Acta 318:847

    Article  CAS  Google Scholar 

  19. Ferraz BRL, Guimarães T, Profeti D, Profeti LPR (2018) J Pharm Anal 8:55

    Article  PubMed  Google Scholar 

  20. Ferraz BRL, Profeti D, Profeti LPR (2018) J Solid State Electrochem 22:339

    Article  CAS  Google Scholar 

  21. Won SY, Chandra P, Hee TS, Shim YB (2013) Biosens Bioelectron 39:204

    Article  CAS  PubMed  Google Scholar 

  22. Chen S, Wang C, Zhang M, Zhang W, Qi J, Sun X, Wang L, Li J (2020) J Hazard Mater 390:122157

    Article  CAS  PubMed  Google Scholar 

  23. He B-S, Yan X-H (2018) Sensors 18:846

    Article  PubMed Central  CAS  Google Scholar 

  24. Li H (2019) Int J Electrochem Sci 14:7858

    Article  CAS  Google Scholar 

  25. Wei X, Xu X, Qi W, Wu Y, Wang L (2017) Prog Nat Sci Mater Int 27:374

    Article  CAS  Google Scholar 

  26. Tadi KK, Motghare RV, Ganesh V (2014) Electroanalysis 26:2328

    Article  CAS  Google Scholar 

  27. Bueno AM, Contento AM, Ríos Á (2013) Anal Methods 5:6821

    Article  CAS  Google Scholar 

  28. Gondim CS, Durán GM, Contento AM, Ríos Á (2018) Food Anal Methods 11:1711

    Article  Google Scholar 

  29. Vanoni CR, Winiarski JP, Nagurniak GR, Magosso HA, Jost CL (2019) Electroanalysis 31:867

    Article  CAS  Google Scholar 

  30. De Sousa Luz RA, Martins MVA, Magalhães JL, Siqueira JR, Zucolotto V, Oliveira ON, Crespilho FN, Da Silva WC (2011) Mater Chem Phys 130:1072

    Article  CAS  Google Scholar 

  31. Kozub BR, Compton RG (2010) Sens Actu B 147:350

    Article  CAS  Google Scholar 

  32. Rana A, Baig N, Saleh TA (2019) J Electroanal Chem 833:313

    Article  CAS  Google Scholar 

  33. Da SIS, Araújo MFA, Ferreira HA, Varela JDJG, Tanaka SMCN, Tanaka AA, Angnes L (2011) Talanta 83:1701

    Article  CAS  Google Scholar 

  34. Pereira LNDS, Da Silva IS, Araújo TP, Tanaka AA, Angnes L (2016) Talanta 154:249

    Article  CAS  Google Scholar 

  35. Ferreira APM, dos Santos Pereira LN, da Silva IS, Tanaka SMCN, Tanaka AA, Angnes L (2014) Electroanalysis 26:2138

    Article  CAS  Google Scholar 

  36. Santos AM, Wong A, Cincotto FH, Moraes FC, Fatibello-Filho O (2019) Microchim Acta 186:148

    Article  CAS  Google Scholar 

  37. Farmacopéia ANDVS (2010) Brazilian Pharmacopoeia, 5th edn. ANVISA, Brasília

    Google Scholar 

  38. Li H, Kuang X, Shen X, Jianwei Z, Zhang B, Li H (2019) Int J Electrochem Sci 14:7858

    Article  CAS  Google Scholar 

  39. Ruas De Souza AP, Felix FS, Castro PS, Angnes L, Bertotti M (2016) Anal Methods 8:1078

    Article  CAS  Google Scholar 

  40. Singh P, Kushwaha CS, Singh VK, Dubey GC, Shukla SK (2021) Sens Actu B 342:130042

    Article  CAS  Google Scholar 

  41. Gomes RN, Sousa CP, Casciano PNS, Ribeiro FWP, Morais S, de Lima-Neto P, Correia AN (2018) Mater Sci Eng C 88:148

    Article  CAS  Google Scholar 

  42. Laube N, Mohr B, Hesse A (2001) J Cryst Growth 233:367

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the Brazilian agencies:

National Council for Scientific and Technological Development—CNPq (grant no. 205220/2018-5, 133321/2019-3); Foundation for the Support of Research, Scientific and Technological Development of Maranhão–FAPEMA (grant no. 01372/17-UNIVERSAL). Coordination of Superior Level Staff Improvement—CAPES (grant no. 88887.472618/2019-00-PROCAD-AM, 88882.445688/2019-01).

H.-B. Kraatz is grateful for financial support from Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-06122) and from the University of Toronto Scarborough.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iranaldo Santos da Silva or Luiza Maria Ferreira Dantas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 267 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura Junior, F.G., Veloso, W.B., de Oliveira Junior, J.A. et al. Voltammetric determination of sulfanilamide using a cobalt phthalocyanine chitosan composite. Monatsh Chem 152, 895–902 (2021). https://doi.org/10.1007/s00706-021-02812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02812-9

Keywords

Navigation